

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

EDF Scheduling Technique for Private Cloud
Environment using Hadoop MapReduce

B. Sathish Babu1, Brinda2, and P. Venkataram3

1Professor,Dept. of Computer Science and Engineering,Siddaganga Institute of
Technology,Tumkur,Karnataka,India-572103

2M.Tech Scholar,Dept. of Computer Science and Engineering,Siddaganga Institute of
Technology,Tumkur,Karnataka,India-572103

3Professor,Dept. of Electrical Communication Engineering,Indian Institute of Science,
Bangalore,Karnataka,India-560012

Article Info

Article history:
Received June 26, 2014
Revised
Accepted

Keyword:
Private cloud
Deadlines
Earliest Deadline First
scheduling
Hadoop MapReduce
framework

Abstract

Job scheduling is a key issue, especially in private cloud environment where
resources are limited. The importance of job scheduling increases more
when an application oriented constraints such as time has to be consid-
ered, where user jobs have a deadline to meet. Two-level job scheduling
scheme using EDF MapReduce framework in private cloud environment is
implemented in proposed work. A first-level scheduler, the “Job Scheduler”
determines the order of execution of each incoming jobs and the second-
level scheduler, the “Hadoop MapReduce Server” performs the actual Map
and Reduce tasks. The efficiency of proposed Earliest Deadline First is
illustrated over three other scheduling techniques: FIFO scheduling, Short-
est Job First scheduling and Priority Based scheduling. Experimental re-
sult shows that EDF MapReduce scheduling technique leads to the lowest
executing time and lowest average waiting time for job sets as compared
to other three scheduling techniques mentioned above. In EDF MapRe-
duce scheduling, almost each job in each job sets completes their execution
within their respective deadlines; hence it has almost no deadline miss or
sometimes at the high load time it leads to very less deadline miss as com-
pared to FIFO scheduling, Shortest Job First scheduling and Priority Based
scheduling.

Copyright c

1. INTRODUCTION

Cloud computing has a variety of characteristics such as virtualization, dynamic provi-
sioning, shared infrastructure, multitenancy, network access, etc. It has added an extra level of
virtualization in whole task allocation domain which comes with the advantage of being easily
scalable, but also has the downside of requiring a systematic task scheduling approach.

Scheduling an application in grid computing requires finding a subset of resources for the
application. However, in cloud each scheduling request is job which is composed of set of tasks

Journal Homepage: http://iaesjournal.com/online/index.php/IJ-CLOSER

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

2014 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:
Brinda
M.Tech Scholar,Dept. of
CSE, SIT, Tumkur
Karnataka,India - 572103
+91 9164775837
brinda012@gmail.com

International Journal of Cloud Computing and Services Science (IJ-CLOSER)
Vol. 3, No. 4,August 2014, pp. 233– 251
ISSN: 2089-3337 233

for which resources have to be found first, then virtual machines have to be placed on them and
finally job is scheduled on virtual machines. Hence to allocate resources to each job efficiently,
scheduling plays important role in cloud computing [1].The importance of job scheduling increases
more when an application oriented constraints such as time has to be considered, where user jobs
have a deadline to meet. Priority is applied for scheduling jobs with deadlines and the scheduler
assigns jobs to resources according to the priorities.

Based on the policy for assigning priority, real-time scheduling is classified into two types:
fixed priority strategy and dynamic priority strategy [2]. In fixed priority scheduling all instances
of one task have the same priority. The most influential algorithm under fixed priority assignment
is Rate Monotonic (RM) algorithm proposed by Liu [3]. In RM algorithm, the priority of one
task depends on its releasing rate. The higher the rate is, the higher the priority is. Dynamic
priority assignment is more efficient than the fixed one, since it can fully utilize the processor for
scheduling task. The priorities change with time, varying from one request to another or even
during the same request. The most used algorithm under dynamic priority assignment is Earliest
Deadline First (EDF) [4]. EDF assigns priorities to tasks inversely proportional to the deadlines
of the active jobs. Whenever a scheduling event occurs (job finishes, new job released, etc.) the
queue will be searched for the jobs closest to its deadline. This job is the next to be scheduled for
execution [5]. In EDF it is possible to pre-emptively schedule a given collection of independent
jobs such that all the jobs meet their deadlines.

Task scheduling is a key issue, especially in private cloud environment where resources are
limited. Very limited research has been done so far in scheduling in private cloud, except some
generic algorithm using tool OpenNebula [6]. The main motivation for using EDF task scheduling
scheme in private cloud is the increasing requirements of massive data processing which in turn
resulted in large tasks with deadlines. There are mainly two requirements to be considered. First
requirement is that all tasks have to be guaranteed to complete their execution before their dead-
lines. Second is admission control, i.e., during the runtime of the system whenever new tasks with
deadline arrives, the system must recalculate schedulability allowing new task to enter into system.

The rest of the paper is organized as follows: Section 2 introduces some technical back-
ground necessary to understand Eucalyptus cloud and Hadoop MapReduce framework. Section 3
presents the related work on EDF scheduling technique and MapReduce. The proposed scheme,
EDF Scheduling technique for Private Cloud Environment using Hadoop MapReduce is discussed
in section 4. Section 5 presents the experimental setup and section 6 presents results that support
the contribution of the proposed work. Finally, Section 7 concludes the paper.

2. TECHNICAL BACKGROUND

2.1. Eucalyptus Cloud

Eucalyptus is an open source software that helps in creating and managing a private or
even publicly accessible cloud. It also provides an EC2 (Elastic Cloud Computing) compatible
and S3 (Simple Storage Service) compatible cloud platform. Since Eucalyptus makes use of AWS
(Amazon Web Services) compatible API’s, the client written for AWS can be used with Eucalyptus
also. There are five high-level components each with its own web-service interface that comprise
a Eucalyptus system [8]. CLC is the cloud controller which virtualizes the underlying resources
(server, storage and network). The cluster controller (CC’s) form the frontend for each cluster de-

234 ISSN: 2089-3337

IJ-CLOSER Vol. 3, No. 4, August 2014: 233 – 251

fined in the cloud. NC’s are the Node Controller which are the machines on which virtual machine
instance executes. The Storage Controller (SC) provides block storage service (Similar to Amazon
EB’s) and walrus component allow users to store persistence data which is similar to the Amazon
S3 in functionality.A Eucalyptus Machine Image (EMI) is a special type of pre-packaged operating
system and application software that Eucalyptus uses to create a virtual machine instance.

2.2. Hadoop MapReduce Framework

Hadoop is an open source MapReduce runtime provided by the Apache Software Foun-
dation. It uses the Hadoop Distributed File System (HDFS) as shared storage, enabling data to
be shared among distributed processes using files. The Hadoop runtime consists of two types of
processes: JobTracker and TaskTracker [7]. The JobTracker partitions the input data into splits
using a splitting method defined by the programmer, populates a local task-queue based on the
number of obtained splits, and distributes work to the TaskTrackers. Each TaskTracker controls
the execution of tasks on a node. It receives a split descriptor from the JobTracker, divides the split
data into records (through the ‘RecordReader’ component), and generates a new worker process
that actually processes all the records in the split. Such worker process will run a Map task and
Reduce task.

Figure 1. Data flow in MapReduce [19]

In a Map Reduce program, the Map task and Reduce task is implemented by two functions:
map(), which processes fragments of input data to produce intermediate results, and reduce(),
which combines the intermediate results to produce the final output. Each map input is a key-value
pair (with types defined by the programmer) that identifies a piece of work. The output of each
map is an intermediate result also expressed as a key-value pair (also defined by the programmer).
The reduce input is composed of all the intermediate values identified by the same key; therefore,
the reduce function can combine them to form the final result. Figure 1, illustrates MapReduce
computation.

EDF Scheduling Technique for Private Cloud Environment using HMR (B. Sathish Babu)

IJ-CLOSER ISSN: 2089-3337 235

3. RELATED WORK

Past works have proposed heuristic driven approaches for scheduling workflow applica-
tions [9]. These heuristics cannot be applied in cloud computing environments because heuristic
have bounded number of resources. Therefore, dynamic scheduling of tasks in Cloud has gained
popularity in recent times. Survey on Scheduling issues in cloud computing [10] presents the
comprehensive way of different type of scheduling algorithms in cloud computing environment.
A partitioned earliest-deadline first symbolic schedulability analysis of dataflow graphs that min-
imizes the buffering requirements is discussed in [11]. The constructions of an abstract affine
schedule of the graph that excludes overflow and underflow exceptions and minimizes the buffer-
ing requirements are discussed in this paper.

The problem of secondary job scheduling (jobs with low priorities) with deadlines under
time-varying resource capacity is considered in [12]. For the overloaded system, an online schedul-
ing algorithm V-Dover is proposed with asymptotically optimal competitive ratio when a certain
admissibility condition holds. It is further shown that, in the absence of the admissibility condition,
no online scheduling algorithm exists with a positive competitive ratio. Simulation results are pre-
sented to illustrate the performance advantage of the proposed V-Dover algorithm. [13] Proposes
a new approach of semi partitioning, and design an EDF-based algorithm based on the proposed
semi-partitioning technique. Tasks are never split as long as they can be partitioned. Thus, it com-
pletely succeeds the property of the traditional partitioning technique. According to the simulation
results, the presented semi-partitioning approach improves schedulable multiprocessor utilization
by 10% to 30% over the traditional partitioning approach.

A new MapReduce scheduling technique to enhance map task’s data locality has been pro-
posed in paper [14]. This technique is integrated into Hadoop default FIFO scheduler and Hadoop
fair scheduler. To evaluate this technique, comparison is done with MapReduce scheduling algo-
rithms with and without proposed technique. Experimental results show that this technique often
leads to the highest data locality rate and the lowest response time for map tasks. Furthermore,
unlike the delay algorithm, it does not require an intricate parameter tuning process. Hadoop’s
scheduler has a defect of data locality in resource assignment. In [15], a locality-aware scheduling
algorithm (LaSA) for Hadoop-MapReduce scheduler has been implemented. Firstly, a mathemat-
ical model of weight of data interference in Hadoop scheduler is proposed. Secondly, the LaSA
algorithm to use weight of data interference to provide data locality-aware resource assignment in
Hadoop scheduler is introduced. Result shows reduction in network traffic and also it increases
performance in data-intensive HPC systems.

In [16] the authors propose a fair scheduling implementation to manage data intensive and
interactive MapReduce applications executed on very large clusters. The main concern of this
scheduling policy is to give equal shares to each user. For the heterogeneous environment SAMR:
a Self-Adaptive MapReduce scheduling algorithm is proposed in [17] which calculates progress of
tasks dynamically and adapts to the continuously varying environment automatically. When a job
is committed, SAMR splits the job into lots of ne-grained map and reduce tasks, then assigns them
to a series of nodes. Meanwhile, it reads historical information which stored on every node and
updated after every execution. Then, SAMR adjusts time weight of each stage of map and reduce
tasks according to the historical information respectively. Experimental results show that SAMR
signicantly decreases the time of execution up to 25% compared with Hadoop’s scheduler and up
to 14% compared with LATE scheduler.

 236 ISSN: 2089-3337

IJ-CLOSER Vol. 3, No. 4, August 2014: 233 – 251

4. PROPOSED WORK

This section focuses on Design goals, Job performance estimation, System model and
Working of EDF Scheduler using Hadoop MapReduce.

4.1. Design Goals

Hadoop’s default scheduler runs the jobs in FIFO order. When user jobs have deadlines to
meet, most of the jobs miss their deadline which is the main disadvantage with FIFO scheduling.
Shortest Job First scheduling also have a drawback of poor response time for large jobs in presence
of short jobs even if large jobs have deadlines to be considered. Priority Based scheduling also have
drawbacks if the lowest priority jobs have deadline requirements. Hence, the first goal of the job
scheduling using EDF mechanism presented in this paper is to enable a MapReduce runtime to
dynamically allocate resources in a cluster of machines based on the deadlines associated with
each job. Second goal is to make sure that each job with deadline is scheduled efficiently so that
they complete their execution within their respective deadlines.

The scheduler introduced in this paper uses the deadlines specified by the cloud clients.
This technique targets the dynamic environment, in which new jobs can be submitted at any time
in any order and in which MapReduce workload of one server share physical resources with other
MapReduce servers.

4.2. Job Performance Estimation

For a given set of jobs M to be run on a MapReduce server, each job m∈ M i.e.,M =
{m1,m2, .,mk} is composed of a set of tasks. Each task, km

i takes time tmi to complete its execution
[18]. The job m is a set of {t1, t2,, tk} .

The set of tasks for a given job m can be partitioned into tasks already completed (Cm),
tasks not yet started (Um) and tasks currently running (Rm) i.e., (Cm)∪(Um) ∪(Rm)= M . Set of
tasks of job m already completed by TaskTracker t is denoted by Cm,t.

Let βm be the mean completion task length observed for any running job m:

βm=

∑
i⊂Cm

tmi

|Cm| (3.1)

Let βt
m be the mean completion time for any task belonging to a job m:

βt
m=

∑
i⊂Cm,t

tmi

|Cm,t| (3.2)

When implementing scheduler in Hadoop both βm and βt
m are to be considered. However,

in the work presented in this paper, only βm is considered and all are assumed to be equal. The main
reason which motivated this decision is the design goal to make EDF task scheduler simple and

EDF Scheduling Technique for Private Cloud Environment using HMR (B. Sathish Babu)

IJ-CLOSER ISSN: 2089-3337 237

Table 1. MapReduce EDF Scheduler Definitions

Module Functions
Job Scheduler Responsible for assigning priori-

ties to the tasks according to their
deadline and assigning tasks to the
Hadoop MapReduce Scheduler.

Hadoop MapReduce Server Performs map and reduce opera-
tions and return the results to the job
Scheduler.

Ordered Queue Jobs are arranged on the basis of
priorities assigned by job Scheduler
and placed in Ordered Queue.

Map The main map function, it takes in-
put data from the job Scheduler and
produces a list of key-value pairs.

Reduce The main Reduce function, it is
given an iterator which will iterate
over all the key-value pairs gener-
ated by map tasks.

therefore TaskTracker of each Hadoop MapReduce server is considered identical. Another reason
is that the task scheduling occurs in dynamic environment thus task completion time for each task
changes frequently. Considering each TaskTracker’s identical provides little help in scheduling
jobs in dynamic changing cloud environment.

4.3. System model

Two-level job scheduling scheme using EDF MapReduce framework in private cloud en-
vironment is proposed in this paper. A first-level scheduler, the Job Scheduler determines the
order of execution of applications. The second-level scheduler, the Hadoop MapReduce Server
performs the actual Map and Reduce tasks. The architecture of EDF Scheduler using MapReduce
framework is shown in figure 2.

A first-level scheduler, the job Scheduler works as a master node of Hadoop cluster, which
distributes job scheduling work to a number of slave nodes. Hadoop MapReduce servers are the
slave nodes. Jobs are assigned by Job Scheduler in response to the heartbeats (status message)
received from each Hadoop MapReduce servers. Heartbeats are triggered by slaves TaskTracker
and which includes number of free slots available, which gives the Job Scheduler the data necessary
to schedule jobs. Table 1, provide modules and their corresponding functions, used in MapReduce
EDF Scheduler framework.

4.3.1. Hadoop MapReduce Server

The main responsibility of the Hadoop MapReduce server is to process the map and reduce
tasks and return the results to the Job Scheduler. It consists of Shared File System component, Task

238 ISSN: 2089-3337

IJ-CLOSER Vol. 3, No. 4, August 2014: 233 – 251

Figure 2. MapReduce EDF Scheduling Architecture.

Repository component, Heartbeat (Logger) component and Map/Reduce Processor component.

The Shared File System is used for interactions with Job Scheduler, to request job and
download and upload data. Hadoop MapReduce server stores result locally in its Task Repository
component includes the input data, contents of different modules and task performance measure-
ments generated for each task. The Heartbeat component is used to maintain local statistics regard-
ing free slots, processing times of the jobs etc. When job completes, these logger information are
sent to Job Scheduler. Finally, Map/Reduce processor component implements the map and reduce
tasks. Once the Hadoop MapReduce server completes the jobs, the results are uploaded to the Job
Scheduler and stored in Hadoop Server Repository of Job Scheduler.

4.3.2. Job Scheduler

The main function of Job Scheduler is to assign priorities to the jobs according to their
deadline and allocate them to the Hadoop MapReduce server when ever it is available to run a job.
It consists of Requester component, Application Repository component, Ordered Queue compo-
nent, Hadoop Server Repository component and UDP Socket.

EDF Scheduling Technique for Private Cloud Environment using HMR (B. Sathish Babu)

IJ-CLOSER ISSN: 2089-3337 239

Table 2. Different Packet Types and its functionality

TYPE Sender Receiver Functionality
Job Packet Clients Job Sched-

uler
Senders IP Addr;
File name to be
scheduled; Dead-
line.

Join Packet Hadoop
MapReduce
Server

Job Sched-
uler

List of Hadoop
Servers IP Addr;
List of files up-
loaded in HDFS.

Scheduling Packet Job Sched-
uler

Hadoop
MapReduce
Server

Hadoop Servers
IP Addr; File
name to be
scheduled.

Heart Beat Packet Hadoop
MapReduce
Server

Job Sched-
uler

Status either
”Idle” or
”Busy”.

File Transfer Request Job Sched-
uler

Hadoop
MapReduce
Server

Receive the file
from the Busy
Hadoop Server.

File Transfer Start Job Sched-
uler

Hadoop
MapReduce
Server

Send the file to
the Idle Hadoop
Server.

The Requester component receives the Task Execution request from the cloud clients and
stores client information locally in the Application Repository component. The Job Scheduler
assign priority to each dynamically arriving job based on the deadline. Job with least deadline is
given higher priority. Jobs are organized in Ordered Queue component based on their priority.UDP
Socket is used to listen incoming logs from each Hadoop MapReduce server and after every few
seconds log details are send to Requester component. Hadoop Server Repository stores the entire
map and reduce results. When Hadoop MapReduce server is free the job with highest priority is
assigned to it through Requester component.

4.4. Working

The proposed work focuses on aperiodically arriving jobs in dynamic private cloud envi-
ronment, where the main objective is the completion of jobs within their respective deadlines. For
creating the job, the client provide the files to be scheduled along with the respective deadlines
and other optional parameters which are passed in client utility function defined in the client mod-
ule. There are six different packets considered in the proposed work: Job Packet, Join Packet,
Scheduling Packet, Heart Beat Packet, File Transfer Request and File Transfer Start. The func-
tionality of each of these packets is listed in Table.2. Client sends the Job Packet to Job Scheduler
which mainly include the files to be scheduled with respective deadlines.

Once the job is submitted and the Job Scheduler receives the Job Packet, it assign priori-
ties to each job according to their deadlines and insert the jobs in the ordered queue according to

240 ISSN: 2089-333

IJ-CLOSER Vol. 3, No. 4, August 2014: 233 – 251

Table 3. Pseducode for Hadoop MapReduce Server

1. Input:Scheduling Packet;File Transfer Start;
File Transfer Request

2. Output:Join Packet;Heart Beat Packet
3. begin
4. Filesystem.get(conf) // To configure HDFS
5. Upload Input Data files to HDFS
6. Send Join Packet to Job Scheduler
7. while(true)
8. if Scheduling Packet
9. Start job Execution Process
10. Set Status map==”Busy”
11. Send Heart Beat Packet
12. if Job Finished
13. Set Status map==”Idle”
14. Send Heart Beat Packet
15. Send the Job Completion Time
16. endif
17. elseif File Transfer
18. Receive the file from the Busy

Hadoop Server
19. else File Transfer Start
20. Send the file to the Idle Hadoop

Server
21. endelseif
22. else
23. Wait for Scheduling Packet
24. endif
25. endwhile
26. end

the priorities. The ordered queue changes dynamically on arrival of each Job Packet. The pse-
ducode for Job Scheduler is shown in Table 4. The main function of first-level scheduler, the Job
Scheduler is to assign the jobs to different Hadoop MapReduce Server. First, the Job Scheduler
read Heart Beat Packet from each Hadoop Server, if the status of Hadoop Server which has the re-
quested file to be scheduled is Idle then Job Scheduler sends the Scheduling Packet to the Hadoop
MapReduce Server and if the status is Busy then Job Scheduler sends File Transfer Request to the
Busy Hadoop MapReduce Server and File Transfer start to the Idle Hadoop MapReduce Server
then sends the Scheduling Packet to the Idle Hadoop MapReduce Server. After receiving the job
completion time from Hadoop MapReduce Server, Job Scheduler sets the job status as completed.

To make the implementation simple, each Hadoop MapReduce Server node upload the In-
put Data file in HDFS and sends the detail to the Job Scheduler by sending the Join Packet. The
Input Data is the data file the Hadoop MapReduce server loads in HDFS and also user requests
into the system. The pseducode for Hadoop MapReduce Server is shown in Table 3. Once the
Scheduling Packet is sent from Job Scheduler, the Hadoop MapReduce Server first creates a direc-
tory structure for it consisting of folder for map result, reduce result and final results. The original
input data file is stored in a seperate folder so that it can be used for subsequent jobs without
having to be re-uploaded. Hadoop Server waits for the Scheduling Packet from the Job Sched-

EDF Scheduling Technique for Private Cloud Environment using HMR (B. Sathish Babu)

IJ-CLOSER ISSN: 2089-3337 241

Table 4. Pseducode for Job Scheduler

1. Input:Join Packet;Heart Beat Packet;Job Packet
2. Output:Scheduling Packet;File Transfer Start;

File Transfer Request
3. begin
4. while(true)
5. if Join Packet
6. Add Hadoop MapReduce Server IP;File

lists in Hadoop Server Repository.
7. elseif Job Packet
8. Assign Priority
9. Add Job to Ordered Queue
10. Read Heart Beat Packet from each

Hadoop Server
11. if status map==”Idle”
12. Send Scheduling Packet
13. else
14. Send File Transfer Request to Busy

Hadoop Server
15. Send File Transfer Start to Idle Hadoop

Server
16. Send Scheduling Packet
17. if Job Completed
18. Set Job status==”completed”
19. endelseif
20. endif
21. endwhile
22. end

uler. Once Scheduling Packet is received, it sets its status as Busy and send the Heart Beat Packet
to Job Scheduler. Each Hadoop MapReduce Server can receive two File Transfer request from
the Job Scheduler: File Transfer Request and File Transfer Start. If Hadoop MapReduce Server
receives File Transfer Request it receive the file from the Busy Hadoop Server and if it receives
File Transfer Start then it send the file to the Idle Hadoop Server. Once the file is copied from Busy
Hadoop Server to Idel Hadoop Server, job execution beings. Each Hadoop MapReduce Server be-
ings the job execution by downloading the input data from its HDFS and after this it performs the
map task. Once map results are uploaded, it creates the reduce inputs by concatenating the map
results. The resultant data received from the reduce operatios are stored as the final results. After
the job completion, Hadoop Server set its status as Idle and again send the Heart Beat Packet to
Job Scheduler along with the job completion time.

5. EXPERIMENTAL SETUP

The proposed MapReduce EDF Scheduling scheme is designed to operate in Eucalyptus
private and hybrid cloud environment. Figure 3, describes the basic eucalyptus cloud setup with
two servers (CC Server and NC Server) and client machine. The CC Server is the Cloud Con-
troller in this setup, running on 64-bit CentOS machine. It also serves the functionality of Cluster
Controller, Walrus and Storage Controller. NC Server is running on 64-bit CentOS machine and it

242 ISSN: 2089-3337

IJ-CLOSER Vol. 3, No. 4, August 2014: 233 – 255

is Node Controller of Eucalyptus. Instances of the virtual machine run on the NC Server. Table 5
presents the sample configuration for CC Server and NC Server.

Figure 3. Basic Eucalyptus Cloud Setup.

CC Server requires two network interfaces:eth0 and eth1. eth0 is the public network inter-
face for enterprise connections with the client and eth1 is the private network interface for private
Eucalyptus connections with Node Contollers. The client runs on Windows 64-bit version so that
Firefox or other browsers can be used to access the Eucalyptus web interface.Job Scheduler mod-
ule is implemented on CC Server. Hadoop MapReduce Server is implemented on other i3 Intel
processor with 500GB HDD and 2GB RAM on 32-bit Windows version.

Table 5. Sample Configuration for CC Server and NC Server

CC Server NC Server
Functionality CLC,CC,SC and Wal-

rus
NC

No. of NIC’s eth0-public Network
eth1-private Network

eth1-private N/W

IP Addresses eth0-
192.168.196.179
eth1-
192.168.196.180

eth1:192.168.196.175

Gateway IP 192.168.196.179 192.168.196.179

5.1. Application and Scheduling Techniques

The effectiveness of Earliest Deadline First scheduling in private cloud environment can
be evaluated in terms of completion time goals by all the submitted jobs. A real time application,
Gmail application is implemented to evaluate the proposed Earliest Deadline First using Hadoop
MapReduce framework. Different sets of mailing jobs along with the deadlines are submitted by
cloud users to Job Scheduler. Job Scheduler running on the Cloud Controller of Eucalyptus divides
the job into multiple Hadoop MapReduce Server. Each Hadoop Task Tracker is configured to run
a maximum of one task in parallel (one slot for Map tasks and one for Reduce tasks). For each job
the mappers emit key,Value where the Key is the filename and the Value is the number of different

EDF Scheduling Technique for Private Cloud Environment using HMR (B. Sathish Babu)

IJ-CLOSER ISSN: 2089-33371 243

file. The reduce tasks then separate the input records according to the value received from mapper
and send emails with the attached file for which the request is sent in each job. The pseducode
for Map and Reduce function is shown in Table 6 and Table 7 respectively. Each job is configured
with random completion time which indicate its deadline.

Table 6. Pseducode for Map Function

1. Input: Scheduling Packet; Input Data.
2. Output: key1; Value1
3. begin
4. while(true)
5. Read each Scheduling Packet for unique

file name
6. Count unique file name
7. Generate
8. key1= unique file name
9. Value1= count of unique file name
10. endwhile
11. end

The efficiency of proposed Earliest Deadline First is illustrated over three other scheduling
techniques: FIFO, Shortest Job First and Priority Based. In FIFO Scheduling, job leaves the queue
at each Hadoop MapReduce server in the order in which they arrive: job coming in first is handled
first, job coming in next waits until the first is finished. Shortest Job First Scheduler assigns the
job to the Hadoop Server depending upon the length of each job. In the Gmail application the
length of each job is calculated by the number of ToEmailAddresses. Moving short job before
long job decreases the waiting time of short job but meanwhile also increases the waiting time of
long job. In Priority Based Scheduling, all the jobs are mainly divided into three types of jobs:
Very Strict jobs, Tight jobs and Soft jobs.Very Strict jobs have highest priority. Next priority is
given to the Tight jobs then last priority is given to the Soft jobs. Jobs are scheduled on the basis
of these three priorities.The following experiments are conducted which illustrates the efficiency
of Earliest Deadline First in private cloud scenario when jobs deadline have to be considered.

Table 7. Pseducode for Reduce Function

1. Input: key1; Value1
2. Output: key2; Value2
3. begin
4. while(true)
5. Read key1; Value1 for each Scheduling

Packet
6. email.sendMail(...)
7. Generating
8. key2= attached file name
9. Value2= Either Yes or No

(depending on deadline is missed or not)
10. endwhile
11. end

244 ISSN: 2089-3337

IJ-CLOSER Vol. 3, No. 4, August 2014: 233 – 251

Table 8. Hadoop MapReduce Server’s Readings with Different Set of Jobs

MapReduce Readings Job 10 Job 20 Job 30 Job 40 Job 50
HDFS Bytes Read 2065 4155 6218 8308 10177
HDFS Bytes Written 835 1669 3472 3337 4166
Local Bytes Read 1099 2099 3169 4239 5388
Local Bytes Written 2974 5848 8792 11736 14754
Map Output Bytes 854 1707 2561 3416 4269
Map Input Bytes 804 1607 2411 3213 4019

6. RESULT EVALUATION AND ANALYSIS

The job sets considered for the experiments is composed of five different set of jobs that
share resources during their execution. Each set of jobs have different number of job scheduling
requests varying from 10-50 jobs. The scenario is realistic in terms of sending the mail with
attached file. Totally, four files are considered in the evaluation of proposed work. The size of each
file is of 1Kb. Table 8 represents the Hadoop MapReduce Server’s readings with Different Set of
Jobs.

Figure 4. Comparison of Hadoop MapReduce Server’s readings with 1Kb and 5Kb Files

Figure 4 represents the variations of Hadoop MapReduce Server’s readings when the size
of each file is increased to 5Kb. Y-axis represents the bytes reading. It can be seen from the figure
that HDFS bytes read and HDFS bytes written for 5Kb file is very high as compared to 1Kb file.
All the other Hadoop MapReduce Server’s reading for 1Kb file is lesser as compared to 5Kb file.
Following experiments are conducted with 1Kb files to evaluate the proposed Earliest Deadline
First scheduling in private cloud.

6.1. Experiment One: Performance of Earliest Deadline First

To study the behaviour of Earliest Deadline First, in the first experiment different set of
jobs are submitted to different number of Hadoop MapReduce Server’s.

EDF Scheduling Technique for Private Cloud Environment using HMR (B. Sathish Babu)

IJ-CLOSER ISSN: 2089-3337 245

Figure 5. Job Completion Time for Different Job Sets in Different Hadoop MapReduce Server

Figure 5 shows the result of scheduling five different job sets varying from 10-50 jobs in
three different Hadoop MapReduce Server’s using EDF Scheduler. Y-axis represents the time in
Milliseconds (ms).The job completion time for each job sets gradually decreases when the number
of Hadoop Server is increased. For example, it can be see that time to schedule 50 job set in two
Hadoop Server is 870000 ms whereas it decreases to 780000 ms when it is scheduled in three
Hadoop Server and further it decreases to 460000ms when scheduled in four Hadoop Server.

Figure 6. Average Waiting Time for Different Job Sets in Different Hadoop MapReduce Server

Figure 6 shows the average waiting time for each job sets when scheduled in three different
Hadoop MapReduce Server’s respectively. Here the results clearly shows that the average waiting
time of each job set gradually decreases with the increase in the count of Hadoop MapReduce
Server. The average waiting time for 50 job sets in two Hadoop Server is 215000 ms whereas
it decreases to 185000 ms in three Hadoop Server and further it decreases to 155000 ms in four
Hadoop Server.

Figure 7 shows the average Throughput of EDF scheduling approach in different Hadoop
MapReduce Server’s. Here the Throughput is the number of jobs scheduled per minute. With

246 ISSN: 2089-3337

IJ-CLOSER Vol. 3, No. 4, August 2014: 233 – 251

the increase in number of Hadoop MapReduce Server’s the EDF Throughput also increases. The
throughput for one Hadoop Server is 2 whereas it increases to almost 4 for two Hadoop Server.
For three Hadoop Server its nearer to 5.5 and further it increases to 7 for four Hadoop Server.

The first experiment results that the proposed Earliest Deadline First scheduler with Hadoop
MapReduce gives better performance for the large set of jobs in private cloud environment. The
performance of EDF scheduling is further compared with three other scheduling algorithms which
are illustrated in the next experiments.

6.2. Experiment Two: Comparison for Deadline Miss

The aim of the second experiment is to evaluate the effectiveness of Earliest Deadline First
scheduling in private cloud over FIFO, Shortest Job First and Priority Based scheduling. This
experiment is conducted with two Hadoop MapReduce Servers to illustrate the number of jobs
which miss its deadline when scheduled using proposed EDF scheduler and also by other three
scheduling algorithm. Figure 8 illustrates the comparison of number of jobs which missed its
deadline when scheduled with EDF, FIFO, Shortest Job First and Priority Based Scheduler. It can
be clearly seen that for job sets 10 and job sets 20 there is no job which misses its deadline, for job
sets 30 and job sets 40 there is only one job which misses its deadline and for job set 50 three job
miss its deadline. The other three scheduling approach has high deadline missing rate as compared
to proposed Earliest Deadline First scheduling.

Figure 7. Average Throughput for Different Hadoop MapReduce Server

The results of second experiment shows that the proposed EDF MapReduce scheduling
technique leads to almost no deadline miss or very less deadline miss during very high load on
Hadoop MapReduce Server.

6.3. Experiment Three: Comparison for Job Completion Time and Average Waiting Time

The third experiment is conducted to illustrate the job completion time and average waiting
time for different job sets. Different job sets are scheduled in two Hadoop MapReduce Server

EDF Scheduling Technique for Private Cloud Environment using HMR (B. Sathish Babu)

IJ-CLOSER ISSN: 2089-3337 247

Figure 8. Comparison for Deadline Miss

using EDF and other three scheduling approach. The Figure 9 shows that the job completion time
for scheduling jobs using proposed EDF is much lesser as compared to other three scheduling
approaches. For scheduling 50 jobs using FIFO 850000 ms was required, when same 50 jobs
are scheduled using Shortest Job First scheduling it took 890000 ms whereas for Priority Based
scheduling 950000 ms was required. But when same 50 set of jobs were scheduled using proposed
EDF it took 755000 ms to successfully get scheduled.

Figure 9. Comparison for Job Completion Time

Figure 10 shows the average waiting time for different job sets in two Hadoop Server. The
average waiting time for different job sets also decreases same like job completion time when jobs
are scheduled using proposed EDF scheduling.

The third experiment concludes that the proposed EDF scheduling in private cloud using
Hadoop MapReduce Server is very efficient with respect to job completion time and average wait-
ing time when compared with FIFO scheduler, Shortest Job First scheduler and Priority Based
scheduler.

IJ-CLOSER Vol. 3, No. 4, August 2014: 219 – 237

248 ISSN: 2089-3337

IJ-CLOSER Vol. 3, No. 4, August 2014: 233 – 251

Figure 10. Comparison for Average Waiting Time

6.4. Experiment Four: Comparison for Throughputs

Fourth experiment is conduced to compare the throughput of FIFO scheduler, Shortest Job
First scheduler, and Priority Based scheduler with EDF scheduler. Here the throughput is the
measure of number of jobs scheduled per minute by each of the scheduler. Different job sets
are scheduled in two Hadoop MapReduce Server using all four scheduling approach. Figure 11
clearly shows that throughput of EDF is higher as compared to other three scheduling approach.
The throughput for scheduling 50 jobs using EDF scheduler is above 4 where as for FIFO , Shortest
Job First and Priority Scheduler it is below 3.5.

Figure 11. Comparison of Throughput

Results of experiment four indicates that the throughput of proposed EDF scheduling ap-
proach for private cloud is higher as compared with FIFO scheduler, Shortest Job First scheduler
and Priority Based scheduler

EDF Scheduling Technique for Private Cloud Environment using HMR (B. Sathish Babu)

IJ-CLOSER ISSN: 2089-3337 249

7. CONCLUSION

This work presents the implementation of Earliest Deadline First Scheduling in Eucalyptus
private cloud using Hadoop MapReduce framework. EDF scheduling approach has been designed
to work in dynamic environment, in which new scheduling request can be submitted at any time
and in which MapReduce workload of one Hadoop server share physical resources with other
Hadoop servers.

The experimental result shows that, in EDF MapReduce scheduling, almost each job com-
pletes their execution within their respective deadlines; hence it has almost no deadline miss or
sometimes at the high load time it leads to very less deadline miss. EDF MapReduce schedul-
ing technique leads to the lowest executing time and lowest average waiting time for job sets as
compared to the FIFO, Shortest Job First and Priority Based scheduling.

References

[1] Baoxmin Xu, Chunyan Zhao, Enzhao Hua and Bin Hu, ”Job Scheduling algorithm based on
Berger model in cloud environment”, Elsevier publications, March 2011.

[2] Fei Teng , ”Management des donn‘ees et ordonnancement des t‘aches sur architecture dis-
tributes”, Version 1 - 12, E‘cole central paris,Jan 2012.

[3] C. L. Liu and J. W. Layland, ”Scheduling algorithms for multiprogramming in a hard-real-
timeenvironment”, Journal of the Association for Computing Machinery, 20(1):46–61, 1973.

[4] P. Uthaisombut. Generalization of edf and llf, ”Identifying all optimal online algorithms for
minimizing maximum lateness”, Algorithmica, 50:312–328, 2008.

[5] Earliest deadline first scheduling. http://en.wikipedia.org/wiki/Earliest deadline first scheduling
[6] Open Nebula, http://www.opennebula.org
[7] Apache Software Foundation. Hadoop map/reduce tutorial. [Online]. Available:

http://hadoop.apache.org
[8] Eucalyptus, https://www.eucalyptus.com/eucalyptus-cloud/iaas
[9] H. Topcuoglu, S. Hariri and M. Y. Wu , ”Performance effective and lowcomplexity task

scheduling for heterogeneous computing”, IEEE Trans. On Parallel and Distributed Systems,
Volume 13, Issue 3, pp. 260-274, 2002.

[10] Vijindra,Sudhir Shenai, ”Survey on scheduling Issues in Cloud Computing” ,International
Conference On Modeling Optimization And Computing, 2012.

[11] Adnan Bouakaz and Jean-Pierre Talpin, ”Buffer Minimization in Earliest-Deadline First
Scheduling of Dataflow Graphs”, June 20–21,Seattle, Washington, USA,2012.

[12] Shiyao Chen,Ting He,Ho Yin Starsky Wong,Kang-Won Lee and Lang Tong, ”Secondary Job
Scheduling in the Cloud with Deadlines”, july 2004.

[13] Shinpei Kato and Nobuyuki Yamasaki, ”Semi-Partitioning Technique for Multiprocessor
Real-Time Scheduling”, Department of Information and Computer Science Keio University,
Yokohama, Japan,2003.

[14] Chen He, Ying Lu and David Swanson, ”Matchmaking: A New MapReduce Scheduling
Technique”, University of Nebraska-Lincoln Lincoln, U.S.

[15] Tseng-Yi Chen, Hsin-Wen Wei, Ming-Feng Wei and Ying-Jie Chen, ”LaSA: A locality-aware
scheduling algorithm for Hadoop-MapReduce resource assignment”,International Conference
on Collaboration Technologies and Systems (CTS), 2013 .

250 ISSN: 2089-3337

IJ-CLOSER Vol. 3, No. 4, August 2014: 233 – 251

[16] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,S. Shenker, and I. Stoica,
”Job scheduling for multi-user mapreduce clusters”, EECS Department, University of
California, Berkeley Tech. Rep. UCB/EECS-2009-55, Apr 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009.

[17] Quan Chen, Daqiang Zhang and Song Guo, ”SAMR: A Self-adaptive MapReduce Schedul-
ing Algorithm In Heterogeneous Environment”, 2010 10th IEEE International Conference on
Computer and Information Technology, 2010.

[18] Jorda Polo, David Carrera, Yolanda Becerra, Jordi Torres and Ian Whalley, ”Performance-
driven task Co-Scheduling for Mapreduce Environments”, IEEE on Network Operations and
Management Symposium (NOMS), 2010 .

[19] Figure from slide deck from Google MapReduce course. Available under Creative Commons
Attribution 2.5 License. tinyurl.com/4zl6f5.

B. Sathish Babu received his PhD in ECE from Indian Institute of Science,
Bangalore, India. He is a professor at the Department of Computer Science
and Engineering, Siddaganga Institute of Technology,Tumkur,Karnataka,India.
His research interests include, Cloud Computing Scheduling and Security Is-
sues, Privacy issues in WSN, Grid Computing and more. He has published his
research findings in many national and international journals as well as con-
ference proceedings. He is author of book titled “Mobile and Wireless Net-
work Security”, Tata McGrawHill published in 2010 and “Communication Pro-
tocol Engineering”, PHI published in 2014. Further info on his homepage:
http://pet.ece.iisc.ernet.in/sathish/

EDF Scheduling Technique for Private Cloud Environment using HMR (B. Sathish Babu)

IJ-CLOSER ISSN: 2089-3337 251

