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1. INTRODUCTION
Scalability and metering are two popular features among users of commercial cloud computing services,

because they allow users to reduce their operating costs [1, 2, 3]. A user operating a video sharing service based on
a commercial cloud provider can, for instance, purchase fewer computing resources during a period of low demand,
while rapidly scaling to more computing resources in times of high demand, resulting in higher monetary savings. The
cloud computing service provider is able to offer this type of service by sharing its hardware among multiple users.
Through virtualization technology, each client’s computation jobs are encapsulated within a virtual machine (VM).
The cloud provider is able to have multiple VMs share the same hardware, and then migrate the VMs to other physical
machines when the current machine is unable to provide the required amount of resources [4, 5, 6, 7]. The user’s
VM running the video sharing service, from the previous example, could be sharing the same physical hardware with
several other users during his period of low demand. This would require that the cloud provider migrates that VM to
a separated piece of hardware when more computing resources are required [8, 9, 10].

The cloud provider should provide the amount of computing resources that an individual end user has paid
for. However, since the cloud provider is both the entity providing the resources as well as that metering the service
and billing the user, this opens up the possibility that the cloud provider may not provide the computing resources that
the user has bought. Certain types of resources, such as storage space, can be easily verified by the user. The user can
simply attempt to upload a file of a certain size and retrieve it later. However, other computing resources, like CPU,
are more difficult to verify. For instance, instead of allocating 10 VMs to a physical machine to ensure sufficient CPU
times for all VMs, a malicious cloud allocates 11 VMs to that same machine, saving the operation costs of an additional
machine. This type of cheating may even occur when the cloud is not malicious, but instead is due to errors in the
VM migration code or algorithm, or due to the heterogeneity of the underlying hardware [11]. Actually, according to
the service level agreements [12], insufficient CPU resources may also come as a result from some irresistible reasons
(e.g., natural disaster and warfare). In this paper, we assume that irresistible reasons for insufficient CPU resources do
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In this paper, a user-based CPU verification scheme is proposed for the cloud cheating de-
tection problem, where the cloud service provider offers insufficient CPU resources that are
bought by the user. In this scheme, a predefined computational task is constructed for the
cloud to execute. Then, we compare the difference of the actual execution time (recorded by
the user) and the theoretical execution time, as to determine whether the cloud is cheating or
not. A time-lock puzzle is introduced to construct the predefined computational task, so that
this task is guaranteed to be fully executed by the cloud. Our cheating detection process has
a higher probability of detecting cloud cheating if using a larger predefined computational
task, which in turn costs more time. Further analysis shows that, if the total detection time
is limited, it is better to detect cloud cheating using small-scale and short-length cheating
detecting processes multiple times, as opposed to large-scale and long-length processes a
few times. We also discuss the heterogeneity of CPU resources through two simple models.
Finally, the feasibility and validity of our scheme is shown in the real system evaluations.
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Figure 1. Example of the cheating detection.

not exist, and then consider the problem of allowing users to test and verify their allocated CPU resources [13].
Our proposed solution lets the user check the amount of CPU resources, through measuring the time duration

for the cloud to complete a predefined computing task (PCT). Fig. 1 illustrates this checking process. First, the user
requires the cloud to execute a PCT, which needs 1010 CPU instructions to complete. Then, the user records the
actual executing time of the PCT, which is 20s. Meanwhile, according to the committed CPU frequency, the user can
theoretically predict the execution time as 1010/1GHz = 10s. Since the actual execution time is much longer than the
theoretical execution time, the user can then judge that the cloud is cheating (i.e., the user receives insufficient CPU
resources). The above process is called the cheating detection process, which addresses the following challenges.

• How can we guarantee that the PCT is indeed executed by the cloud? Instead of actually running the PCT, the
cloud can predict the execution time of the PCT, and then report completion at the expected task finishing time.
Even if the PCT returns parameters to verify its execution, the cloud may simplify the PCT to speed up the task
execution (e.g., repeating a = a+ 1 one thousand times can be simplified to run a = a+ 1000 directly).

• Since the user purchased the cloud for computation rather than detection, the cloud may not be idle. How do we
deal with the cheating detection process when there are some background programs assigned by the user?

• Generally speaking, a larger PCT resists interferences better, and thus, has a higher performance on cheating
detection. However, a larger PCT costs more time as a tradeoff. If the total detection time is limited, should we
use small-scale PCT more times, or large-scale PCT fewer times?

• As previously mentioned, the heterogeneity of the underlying hardware [11] leads to fluctuated CPU resources
that are allocated to the user. Can we model such a fluctuation? Moreover, how does such a fluctuation influence
our cheating detection process in real cloud systems?

The rest of the paper is organized as follows. First, we present the cheating problem, and show the monitoring
architecture in Section 2. Then, the detailed cheating detection process is described in Section 3. We analyze the error
control parameter in Section 4. Extensions and discussions on the fluctuation of the CPU resources are described in
Section 5. Then, real system evaluation is conducted in Section 6. Finally, we conclude this paper in Section 7.

2. END USER CPU MONITORING
In this section, we first present the cloud cheating problems from different perspectives, including the math-

ematical definitions of cloud cheating and cheating detection, assumptions of the cloud and the user, etc. Then, we
show the monitoring architecture: the components involved in the cheating detection process, the interactions between
the cloud and the user, and the cheating determination.

2.1. Problem Formulation

Let CPUC and CPUR denote the committed CPU frequency of the cloud brought by the user and the real
CPU frequency of the cloud, respectively. Here, we first consider a simple case, where CPUC and CPUR are stable
and fixed values. A more general and practical case, where CPUR varies with respect to the time due to the hardware
heterogeneity [11], is discussed in Section 5. Then, the cloud cheating is defined as the following:

CPUR < CPUC − ε (1)

where ε is a parameter for the error control. Another representation of Eq. 1 is

ta > tt + δ (2)
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where ta is the actual time of executing a task which needs in total I CPU instructions to complete, and tt is the
theoretical time of executing the same task. Ideally, if the cloud CPU is idle, we have ta = I/CPUR and tt =
I/CPUC . Similar to ε in Eq. 1, δ is also an error control parameter. Considering that Eq. 2 is closer to the user
experience than Eq. 1, we use Eq. 2 as the cheating definition. The insight behind this definition is that the user is
unsatisfied if he waits for an abnormal task execution time that is significantly longer than his prediction.

Since the user bought the cloud for some computational tasks rather than detections, we assume that resources
for detection are limited: the whole running time of the detection program should be less than D seconds (i.e., the
detection budget). The cloud is running some background programs, the total CPU usage of which is stably x%. In
addition, we assume that cloud is as smart as humans in doing any possible anti-detection action. For example, the
cloud would present the committed CPU frequency, rather than its real CPU frequency, in the OS. We also assume that
the user has a reliable local PC with CPU frequency CPUL and a timer for detection assistance. Small interferences,
such as network transmission delay, are neglected.

2.2. Monitoring Architecture

Since the cloud is able to do any given anti-detection action, the cheating detection has to depend on reliable
parameters provided by the user. Among all these parameters, time is the most convenient one, which also serves as
our objective. Therefore, we decided to construct a special PCT in the user’s local PC for the cloud to execute, and to
observe the time difference between ta and tt in executing the PCT to determine whether the cloud is cheating or not.

CloudTime

Step 1: preprocessing

Step 2: assignment

Step 3: execution

Step 4: completion

Step 5: prediction

Step 6: determination

End User

Figure 2. The cheating detection process.

The proposed cheating detection framework is depicted in Fig. 2. In step 1, the user constructs the PCT
(totally T ∗ CPUL CPU instructions) in the local PC. The PCT has some random inputs for the initialization, and
returns an output (or say answer, denoted as aL) at the end of the program. In step 2, the user starts the timer and
requires the cloud to execute the PCT with the same inputs in the local PC. In step 3, the cloud executes the PCT.
In step 4, when the cloud completes the PCT, it returns the output (denoted as aC) to verify that the PCT has been
executed. Meanwhile, the user stops the timer to obtain the actual task execution time in the cloud (denoted as ta). In
addition, the cloud also returns the parameters of its CPU usage percentage of the background programs before running
the PCT (denoted as x%). In step 5, based on the amount of calculations of the PCT (T ∗ CPUL CPU instructions)
and the parameters on the computational resources of the cloud (x% and CPUC), the user can predict the theoretical
task execution time of the PCT (denoted as tt). In step 6, the cheating determination is done based on aL, aC , ta, tt,
and the error control parameter δ. aL = aC represents that the PCT is executed completely in the cloud. ta > tt + δ
determines that the cloud is cheating. In the next section, we will show more details on the cheating detection process,
including the construction of the PCT, the calculation of tt, and so on.

3. MONITORING ALGORITHMS
In this section, we show the details of the monitoring algorithms. First, we introduce the PCT and its charac-

teristics. Second, we present the method for theoretical task execution time calculation. Third, we discuss the cheating
determination and error control. Finally, the complete algorithm is shown. All parameters are shown in Table 1.
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Table 1. Parameters Involved in this Paper

Variable Description
CPUL The CPU frequency of the local PC.
CPUC The committed CPU frequency of the cloud.
CPUR The real CPU frequency of the cloud, with its initial value being CPU0.
p, q, n p and q are two large random prime numbers, while n = pq.
φ(n) Calculated by φ(n) = (p− 1)(q − 1).
b A large random number which is relatively prime to n, i.e., gcd(b, n) = 1.
S The number of computing b = b2mod n per second in local PC using 100% CPU.
T A time parameter in seconds, while the PCT has in total T ∗ CPUL CPU instructions.
M Calculated by M = TS. Computing b2mod n for M times takes T seconds in local PC.
aL, aC Respectively calculated by aL = b2

M

mod n in the local PC and aC = b2
M

mod n in the cloud.
x% The background program CPU usage in the cloud, before running the cheating detection program.
y% The background program CPU usage in the cloud, when running the cheating detection program.
z% The cheating detection program CPU usage in the cloud.
t, t1, t2 t is the time. t1 and t2 are the start and finish time of the cheating detection process, respectively.
ta The actual time duration of running the cheating detection program in the cloud.
tt The theoretical time duration of running the cheating detection program in the cloud.
I , δ I is used to define the cloud cheating in Eq. 2, while δ is the error control parameter.
D The total time budget of the cheating detection process.
Tmin Calculated by Tmin = I/CPUL, the lower bound of parameter T .
Tmax Calculated by Tmax = D/(1 + x%) ∗ CPUC/CPUL, the upper bound of parameter T .
g(t) A Gaussian Process that is used to model CPUR.
f(·) A monotonic decreasing function that represents the system control mechanism.

3.1. Predefined Computational Task

The PCT includes T ∗ CPUL CPU instructions in total (we have T ∗ CPUL > I to satisfy the cheating
definition in Eq. 2). This task is executed on both the cloud and the local PC. To ensure that the cloud runs the PCT,
the PCT should return an answer. Let aC and aL denote the answer from the cloud and the local PC, respectively. If
aC = aL, the PCT is executed completely in the cloud. Since we compare the actual and theoretical time duration
of the task execution to determine cheating, the PCT should not be simplified. For example, if the PCT is to repeat
a = a + 1 one thousand times (uses a = 0 for initialization and returns a = 1000), the cloud could replace this task
with a = a+ 1000 as a simplification. A time-lock puzzle is introduced to the PCT to solve this problem, which can
be viewed as an application of the random-access property of the Blum-Blum-Shub b2mod n pseudo-random number
generator [14, 15]. The insight is that this time-lock puzzle cannot be further simplified for the computation.

Theorem 1 (Time-Lock Puzzle Theorem) Assume a large number b is relatively prime to a large composite number
n, without factoring n; the quickest method to solve b2

M

mod n (M is an arbitrary natural number) is to loop
b = b2mod n for M times (returns b as the outcome).

The Time-Lock Puzzle Theorem is proven in [16, 17]. If factoring n takes too much time, then calculating
b2
M

mod n cannot be simplified. If n satisfies n = pq, where p and q are two random prime numbers that are large
enough, then factoring n is costly. However, if p and q are known, a = b2

M

mod n can be efficiently calculated by

a = bemod n where e = 2Mmod φ(n) and φ(n) = (p− 1)(q − 1) (3)

Therefore, calculating b2
M

mod n is used as the PCT, which takes T ∗CPUL CPU instructions if p and q are unknown.
Constructing the PCT in the local PC is shown in Algorithm 1 (step 1 in Fig. 2), and the process of executing the PCT
in the cloud is shown in Algorithm 2 (step 3 in Fig. 2). Note that steps 2 and 4 are used to measure the execution time
of Algorithm 2 in the cloud. In the next subsection, we will discuss how to calculate tt, which is step 5 in Fig. 2.

3.2. Theoretical Task Execution Time

Assume x%, y%, and z%, respectively, present the background program CPU usage in the cloud before
running the cheating detection program, the background program CPU usage in the cloud when running the cheating
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Algorithm 1 Constructing The PCT in The Local PC

Input: Parameter T ;
Output: Parameters b, M , n, and aL;

1: Close all background programs in the local PC;
2: Generate two large random prime numbers p and q;
3: Calculate n = pq;
4: Generate a large random number b that gcd(b, n) = 1;
5: Set S = 0;
6: while loop time < 1 second do
7: b = b2mod n;
8: S = S + 1;
9: Calculate M = ST ;

10: Calculate aL = b2
M

mod n efficiently by Eq. 3;
11: Return b, M , n, and aL;

Algorithm 2 Executing The PCT in The Cloud

Input: Parameter b, M , n;
Output: Parameters x% and aC ;

1: Get background program CPU usage x%;
2: for count = 1 to M do
3: b = b2mod n;
4: Set aC = b;
5: Return x% and aC ;

detection program, and the cheating detection program CPU usage in the cloud. We further assume that the background
programs and the detection program have stable CPU usage, which does not change over time. Obviously, y%+z% =
100%. However, the relationship between x% and y% is not simply x% = y%. If running the background programs
alone, it takes x% CPU usage. If running the detection program alone, it takes 100% CPU usage. As far as we
know, in most OS, when running the background programs and the detection program together, they share the CPU
proportionally to the CPU usage that they take when running alone. Consequently, we have

y% =
x%

x%+ 100%
and z% =

100%

x%+ 100%
(4)

Note that the PCT includes T ∗CPUL CPU instructions in total. If x% = 0% (i.e., no background programs
in the cloud), executing T ∗ CPUL CPU instructions in the cloud should take T ∗ CPUL/CPUC seconds. Thus,

tt = T ∗ CPUL
CPUC

(5)

Taking background programs into consideration, then the theoretical task execution time can be calculated as follows:

tt = T ∗ CPUL
CPUC ∗ z%

= T ∗ (1 + x%) ∗ CPUL
CPUC

(6)

Note that, the theoretical task execution time (tt) obtained in Eq. 6 corresponds to step 5 in Fig. 2. In the next
subsection, we show the method of determining cloud cheating, which corresponds to step 6 in Fig. 2.

3.3. Cheating Determination

To determine whether the cloud is cheating or not, the first step is to check that, the PCT is executed correctly
in the cloud. If the PCT is executed completely, we should have aC = aL, since aC and aL are the answers to the
same PCT. Then we use Eq. 2 to judge cheating: if ta > tt + δ, the cloud is judged to be cheating; if ta ≤ tt + δ, the
cloud is not cheating. The cheating determination process has been shown in Algorithm 3.

However, determining the error control parameter δ remains to be a major challenge. Ideally, if there is no
interference, δ could be set to 0, and tt should be strictly equal to ta. But interferences indeed exist. Since tt is
calculated by T , x%, CPUL and CPUC (where δ is the error control parameter), δ may be related to the same four
parameters. How to set δ is further discussed in Section 4.
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Algorithm 3 Cheating Determination

Input: Parameter aC , aL, ta, tt, and δ;
Output: Whether the cloud is cheating or not;

1: if aC 6= aL then
2: Return cheating;
3: else
4: if ta > tt + δ then
5: Return cheating;
6: else
7: Return no-cheat;

Algorithm 4 The Whole Cheating Detection Process

Input: Parameter T , D, x%, CPUL, CPUC ;
Output: Whether the cloud is cheating or not;

1: Calculate Tmax = D/(1 + x%) ∗ CPUC/CPUL;
2: for count = 1 to bTmax/T c do
3: Use Algorithm 1 to construct the PCT in the local PC;
4: Start timer;
5: Use Algorithm 2 to execute the PCT in the cloud;
6: Stop timer to get the actual task execution time (ta);
7: Calculate the theoretical task execution time tt by Eq. 6;
8: if Algorithm 3 judges the cloud to be cheating then
9: Return cheating;

10: Return no-cheat;

3.4. The Whole Algorithm

The former three subsections introduce the cheating detection process based on Fig. 2, which is predicted
to take tt seconds. However, as previously mentioned, we have in total D seconds for the cheating detection, which
requires tt < D. According to Eq. 6, we have

T <
1

1 + x%
∗ CPUC
CPUL

∗D = Tmax (7)

Note that if T � Tmax (tt � D), then the remaining time is wasted. A better method is to iteratively run the cheating
detection process until all D seconds are used up (totally bTmax/T c rounds). Once the cloud is detected as cheating,
then we judge the cloud to be cheating. For example, if T = 0.1 ∗ Tmax, then we can run the cheating detection
process in Fig. 2 for 10 times: only if the cheating detection processes return no-cheat all 10 times is the cloud judged
to be no-cheat. This method is called multi-round cheating detection, the whole algorithm of which is presented in
Algorithm 4. Meanwhile, the lower bound of the T is given by the definition of cheating in Eq. 2:

T >
I

CPUL
= Tmin (8)

Obviously, the value of T has a great influence on the performance of the cheating detection algorithm, since bTmax/T c
determines the loop times. Intuitively, a larger T brings fewer loops for the cheating detection process, while each loop
has higher accuracy. The value of T , along with the error control parameter, is further discussed in the next section.

4. ERROR CONTROL PARAMETER
In this section, we discuss the error control parameter δ in Eq. 2, where we use ta > tt + δ to determine

cheating. Due to some small interferences (for example, some OS burst processes), the actual task execution time ta
varies. Though ideally ta = tt if the user obtains the committed CPU in the cloud, in practice, ta is only approximated
to tt. Therefore, it is necessary to model the distribution of ta to determine the value of error control parameter δ,
which is presented in the first subsection. Based on the value of δ, we then discuss the value of T to see which scheme
is better (since the total detection time is limited to budget D): a small-scale and short-length cheating detecting
process for more times, or a large-scale and long-length cheating detecting process for fewer times.
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Figure 3. Estimating ta to follow normal distribution (T = 60 and CPUL = CPUR).
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4.1. The Variance of The Actual Task Execution Time

Due to the interference, the ta randomly varies, which is modeled to follow the normal distribution (µ, σ).
Here, µ and σ are the expectation and standard deviation of ta, respectively. Since the 99% confidence interval of
the normal distribution is [µ − 3σ, µ + 3σ], we employ tt to estimate µ and δ = 3σ as the error control parameter
(if ta > tt + δ, the cloud is judged to be cheating). Experiments are conducted to check whether the estimation of
normal distribution is feasible or not, where we test the actual task execution time of a PCT that includes T ∗ CPUL
instructions. The detailed environment setup of this is shown later in Section 6. Then, we collected 20 sampling points
of ta in each test, the distribution of which is called the sample distribution. The maximum likelihood estimate (MLE)
is employed to estimate the distribution of these sampling points, i.e., the estimated normal distribution. The results
in Fig. 3 shows the feasibility of estimating ta to follow the normal distribution.

Now, we need to estimate the value of µ and σ, if no cheating happens. Obviously, µ should be equal to
tt if the cloud is not cheating. Intuitively, σ can be estimated by parameters M , x% and CPUR: M is the input
of Algorithm 2, i.e., the PCT computes b2mod n for M times (T ∗ CPUL instructions in total); x% and CPUR
describes the computational capabilities of the cloud. Fig. 4 shows the relationship between σ and these parameters
(the σ is calculated through MLE). It can be seen that σ is almost linearly proportional to T ∗CPUL, while σ is almost
uncorrelated to parameter x% and CPUR. Thus, the fitting curve of σ is

σ =
T

60
∗ CPUL

2.5
=
T ∗ CPUL

150
(9)

where the unit of T is second, and the unit of CPUL is GHz. Note that, Eq. 9 is only an empirical estimation that
may be sensitive to the cloud environment, i.e., it may not be the same for different cloud systems. Based on Eq. 9,
we further discuss how to set parameter T in the next subsection.

4.2. Analysis on The Cheating Detection Probability

In the former subsection, we modeled ta to follow normal distribution (µ, σ) due to the interferences. For
a single-round cheating detection process, we employ condition ta > tt + 3σ to judge cloud cheating. If CPUR 6=
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CPUC , the probability to successfully detect cheating is

P =

∫ ∞
tt+3σ

1√
2πσ

e−
(t−µ)2

2σ2 dt =
1

2
erfc(

tt + 3σ − µ√
2σ

) (10)

where we have µ = T ∗ (1 + x%) ∗ CPULCPUR
and σ = T∗CPUL

150 . Then, Eq. 10 can be simplified to be

P =
1

2
erfc[

3 + 150(1 + x%)(1/CPUC − 1/CPUR)√
2

] (11)

The cheating detection probability of a single-round cheating detection process has been shown in Eq. 11. Assume
x% = 0% and CPUC = 2.5GHz, we have P = 100% if CPUR = 2.2GHz, P = 98.7% if CPUR = 2.3GHz,
and P = 30.9% if CPUR = 2.4GHz. If the cloud is not cheating (CPUR = CPUC = 2.5GHz), the probability of
erroneous judgement is P = 0.1%. Then, the probability of successful cheating detection using time budget D is

Pd = 1− (1− P )bTmaxT c = 1− (1− P )b
1

1+x%
∗CPUCCPUL

∗DT c (12)

Eq. 12 shows the final cheating detection probability using bTmaxT c rounds, which has been previously mentioned in
Eq. 7. Note that Pd is increased with decreasing T . Considering that the PCT includes T ∗CPUL instructions in total
and CPUL is a fixed value, we have the following position:

Position 1 (Time Assignment Position) Based on our error control model, it has a higher probability of detecting
cloud cheating using small-scale and short-length cheating detecting processes multiple times, as opposed to using
large-scale and long-length cheating detecting processes a few times.

However, our model assumes that there are no other interferences (for example, network transmission delay),
which would lead to errors when T is too small. Another point is that, the background programs generally occupy
CPU erratically; because of this, we suggest running the cheating detection process when the cloud is idle (x% = 0%).

5. EXTENSIONS AND DISCUSSIONS
In former sections, we have considered a case, in which the real CPU frequency of the cloud (i.e., CPUR) is a

stable and fixed value. Meanwhile, the detection has a certain probability, since the actual task execution time (i.e., ta)
may vary, as shown in Fig 3. In this section, we will consider a more general and practical case, where CPUR varies
with respect to the time (i.e., not fixed). Actually, most of the current cloud systems cannot offer completely stable
CPU resources, due to the heterogeneity of the underlying hardware [11]. Therefore, to fulfill the user’s payment,
a very common method for the cloud service provider is to offer bounded CPU resources. In other words, instead
of offering a fixed CPUR, the cloud service provider offers an unstable CPU resource that is always in the range of
[CPULC , CPU

U
C ]. Here, CPULC and CPUUC stand for the lower and upper bound of the committed CPU resource,

respectively (CPULC ≤ CPUC ≤ CPUUC ). At this time, if we only want to check whether the could is cheating
or not, then the previously described detection scheme can still be used; the only difference is to focus on verifying
that the cloud provides a CPU resource of at least CPULC , rather than verifying CPUC . However, a more interesting
problem comes out as follows. Since our detection scheme actually checks the average CPU resource, it does not
necessarily mean that the provided CPU resource is always at least CPULC over the time duration. As shown in Fig.
5, although the average CPUR over the cheating detection time duration is larger than its promised lower bound,
cheating may still happens during some time slots.

Cheating

Time

L

CCPU

RCPU

Detection

Duration

Figure 5. CPUR varies with respect to time.
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In this section, we will give some assumptions on the functional relationship between CPUR and the time,
i.e., assumptions on how CPUR changes with respect to time. Then, we will quantitatively discuss the detection
probability that can be obtained by our scheme. Here, we focus on a theoretical case where the system noise is
ignored, i.e., σ = 0 and ta = µ. However, various starting times of the cheating detection process may lead to
different actual task execution time (i.e., different ta), since the actual CPU resource varies with respect to time. For
simplicity, we also assume that the cloud is idle (x% = y% = 0%) and is fully utilized by the detection program
(z% = 100%). In other words, we assume ta to be equal to the average CPUR over the cheating detection time
duration. In addition, in this section, tt is calculated through CPULC rather than CPUC . Then, we will start with a
Gaussian process to model the relationship between CPUR and the time.

5.1. Gaussian Process

First, we discuss the Gaussian process model, where the change of CPUR follows a Gaussian process. The
reason for using this model is based on previous experiments shown in Fig. 3: the actual execution time of a certain
task follows normal distribution; therefore, the CPU resource may be approximated to follow the same distribution.
Let t denote the time, then we have

dCPUR
dt

= g(t) (13)

where g(t) is a Gaussian process with a mean of zero. Eq. 13 means that the change of CPUR in the next time step is
proportional to a Gaussian random variable. Due to the integral in Eq. 13, we have

CPUR = CPU0 +

∫ t

0

g(τ)dτ (14)

where we denote the initial value of CPUR as CPU0. In addition, it is well-known that the integral of a Gaussian
process (i.e.,

∫ t
0
g(τ)dtτ ) is also a Gaussian process. Let t1 and t2 denote the start and finish time of the cheating

detection process, respectively. Then, the average CPU over the cheating detection time duration is

T ∗ CPUL
t2 − t1

=
1

t2 − t1

∫ t2

t1

CPURdt = CPU0 +
1

t2 − t1

∫ t2

t1

∫ t

0

g(τ)dτdt (15)

where T ∗CPUL is the total number of instructions in the PCT, and t2 − t1 = ta is the actual task execution time. In
Eq. 15, we no longer consider the system noise as previously mentioned (σ = 0 and ta = µ). Meanwhile, tt can be
calculated as T∗CPUL

CPULC
. Then, comparing ta and tt can be converted to compare CPU0 +

1
t2−t1

∫ t2
t1

∫ t
0
g(τ)dτdt and

CPULC . If the former one is smaller, the cloud is judged to be cheating. Note that CPU0 and CPULC are fixed values,
while 1

t2−t1

∫ t2
t1

∫ t
0
g(τ)dτdt is a Gaussian random variable. Now, the cheating detection probability can be calculated

as the probability that Gaussian random variable ( 1
t2−t1

∫ t2
t1

∫ t
0
g(τ)dτdt with mean value zero) is smaller than a

threshold (CPULC − CPU0). Clearly, a larger initial value (larger CPU0) will bring a lower detection probability.

5.2. A General Model

In the previous subsection, we have discussed a Gaussian process to modelCPUR. However, this model may
not be general enough [18], since it does not consider the control mechanism of the cloud system [19]. The system
control mechanism will adjust the CPU resource allocated to the user, e.g., more CPU resources are allocated when
CPUR is much smaller than CPUC (the committed CPU). Therefore, we modify Eq. 13 to be

dCPUR
dt

= f(CPUR − CPUC) + g(t) (16)

where f(·) is a monotonic decreasing function with f(0) = 0. Here, f(·) represents the system control mechanism
that gives feedback to the CPU change. When CPUR > CPUC , the control mechanism turns down the CPU in
the following time to reduce unnecessary resource consumption for the user; when CPUR < CPUC , the control
mechanism turns up the CPU in the following time to guarantee the user’s payment. The detailed functional form of
f(·) depends on the cloud system design, which varies on different clouds.

Now, Eq. 16 posts a higher requirement to obtain statistic characteristics of CPUR. One method for solving
this problem is to use both the discrete state of CPUR and the discrete time steps, instead of continuous values, as
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shown in Fig. 6. The state transfer probability (from the current CPU state to a CPU state of the next time step) can
be determined by Eq. 16. At this time, this problem turns to be a Markov chain [20], the transition matrix of which
can be constructed by the state transfer probabilities. Then, the stationary distribution of CPUR can be solved as the
eigenvectors of the transition matrix. We do not further discuss the properties of the Markov chain, since it is out of
the scope of this paper. Here, we only present a general model to solve Eq. 16, while we intend to look into the real
cloud systems that cannot be fully described by theories. In the next section, real system evaluations are shown to
check the effectiveness of the proposed cheating detection scheme.
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Figure 6. Discrete method to solve Eq. 16.

6. EVALUATION
In this section, the evaluation tests are conducted to check the feasibility and accuracy of the proposed cheat-

ing detection method. First, the evaluation system setup is introduced. Then the memory-intensive test is conducted to
check whether or not the cheating detection process occupies lots of memory. Finally, the evaluation results are shown
to verify the competitive performance of the proposed scheme.

6.1. System Setup

In this paper, we have three evaluation environments, as to show the proposed cheating detection scheme
from different perspectives. The first evaluation environment is based on Oracle VM VirtualBox, version 4.1.22. The
local PC is a laptop with CPU frequency 2.5GHz (CPUL = 2.5GHz). The cloud is simulated by a VM of the
VirtualBox, which is running on another laptop with 4 core CPU of 2.5GHz (CPUC = 2.5GHz for convenience).
The CPU frequency of the VM can be adjusted through settings in the VirtualBox, by limiting the percentage of time
that the virtual CPU is allowed to use of the real CPU, from 40% to 100%. Thus, CPUR can be set from 1.0GHz to
2.5GHz. The program is written in C++ with the use of the GNU multiple precision arithmetic library (gmp library
version 5.1.0). The background programs are made by alternating the endless addition loops and the thread sleep
function. The detection program is executed in the OS of Ubuntu, version 12.04. It is reasonable to test our algorithms
on the VirtualBox software [21], since it presents the virtualization technology, which is operating in the cloud system.
However, there might be some differences between the VirtualBox-based VMs and the real cloud VMs. During the
test, the network service is not closed. The OS has some burst processes, for example, checking for updates through
the network. In addition, experiments shown in Figs. 3 and 4 are conducted in this environment.

The other two environments are real cloud systems. One is the Temple Elastic HPC Cloud [22] (also called
TCloud). TCloud is currently based on the eucalyptus open-source cloud toolkit and is composed of two main compo-
nents: VMs and elastic block storage. The current TCloud configuration is hosted on a 12 (specs) R614 cloud servers
for a total of 96 conventional CPU cores. Each VM is interconnected with a redundant 4-way 10Gb Ethernet and a
redundant 2-way infiniband (specs). Two configurations of VMs are used in our test: single core CPU of 2.8GHz and
dual core CPU of 2.8GHz. The other cloud system is Temple Cluster (also called TCluster), which is constructed
by 32 Dell PowerEdge R210 II Servers. Each server has a dual core Intel Celeron G530 processor at 2.4GHz. Each
server also has 4GB RAM. They all have 500 GB SATA hard drives. For networking, they each have 4 Gigabit ports
on an expansion card with 2 additional service Gigabit ports. Currently, 5 Cisco Small Business 300 Series Managed
Switches are used in this system. These switches have 8 Gigabit ports for servers and 2 Gigabit ports to connect them
to other switches. All of this is housed inside of 3 42U server racks made by Rack Solutions. The TCluster system is
newly constructed and it only provides VMs that have a dual core CPU of 2.8GHz. In addition, the OS and cheating
detection program tested inside the VMs of these two cloud systems are the same as those of the VirtualBox system.
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6.2. Memory-Intensive Test on VirtualBox Environment

Before further evaluations, it is necessary to test whether the proposed method is memory-intensive or not
[23]. Here, memory-intensive means that the cheating detection process frequently occupies RAM, and insufficient
free RAM would lead to aborted detection. This test is conducted in the VirtualBox environment (the first evaluation
environment), in which the memory configuration of a VM can be modified. The cheating detection program is tested
in three different VMs which have memories of 512MB, 640MB, and 2GB, respectively. Meanwhile, we have
T = 60s, x% = 0%, CPUR = CPUC = CPUL = 2.5GHz. A memory of 512MB is not enough for supporting
the OS, leading to slow reactions of the programs, since they need to use the memory in turn. A memory of 640MB
is enough for the OS, while less than 128MB memory is free. A memory of 2GB is enough for all programs.

Table 2. Memory-Intensive Test Results

Memory tt µ of ta σ of ta
512MB 60 62.4 8.27
640MB 60 60.5 1.29
2GB 60 60.2 1.20

The test results are shown in Table 2, in which µ and σ are calculated by MLE through 10 samples. It
can be seen that, even though memory is very limited (512MB), the cheating detection process works well. The ta
does not vary significantly away from tt, though σ is abnormal. When there is only a little free memory (640MB),
the cheating detection process works as fine as when there is enough free memory (2GB). Therefore, the proposed
cheating detection process is not memory-intensive. Even a little free memory can ensure its normal operation.

6.3. Cheating Detection Probability on VirtualBox Environment

In this subsection, we focus on the cheating detection probability of the proposed method, based on the
VirtualBox environment (the first evaluation environment). The cloud cheating is simulated by the CPU frequency
modification of the VirtualBox-based VM. For example, if we want to simulate a dishonest cloud with the real CPU
frequency CPUR = 1.0GHz, we set the CPU frequency of the VM on the VirtualBox to be 1.0GHz. The CPU
frequency of the VirtualBox-based VM is modified through limiting the percentage of time that the virtual CPU is
allowed to use of the real CPU, from 40% to 100%. Therefore, we use CPUC = CPUL = 2.5GHz in this test,
and modify the CPU frequency of the VirtualBox-based VM from 1.0GHz to 2.5GHz, as to simulate cloud cheating
(CPUR varies from 1.0GHz to 2.5GHz). In addition, we set x% = 0% (the simulated cloud is idle).

The theoretical (derived in Eq. 11) and practical cheating detection probabilities of a single-round cheating
detection process have been shown in Fig. 7. A higher detection probability means that the cheating is more likely to
be detected (the higher the better). It can be seen that, a single-round cheating detection process has 100% probability
of discovering the cheating if CPUR < 90% ∗ CPUC = 2.25GHz, and it is able to detect cheating when CPUR <
2.4GHz. Since CPUC = 2.5GHz, it can be concluded that the proposed method works well. Note that a larger
PCT (i.e., a larger T ) brings a slightly better cheating detection probability, which goes against our analysis in Eq.
11. This is due to the existence of interferences that are not considered in our model. Larger PCTs should have better
performances, since they are more interference-resistant.
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Figure 7. The theoretical and practical cheating detection probability of a single-round cheating detection process.
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The theoretical (derived in Eq. 12) and practical cheating detection probabilities of multi-round cheating
detection processes have been shown in Fig. 8. A higher detection probability also means that the cheating is more
likely to be detected (the higher the better). Compared to the single-round cheating detection process in Fig. 7, the
whole cheating detection probability is improved by using a larger detection time budget D. When D = 200s, the
case CPUR < 2.3GHz can be detected for sure. As presented in Position 1, both actually and theoretically, it has a
higher probability of detecting cloud cheating using a small-scale and short-length cheating detecting process many
times, as opposed to a few uses of large-scale and long-length processes. Another point is that, through enlarging the
total time budget of the cheating detection process (parameter D), Pd can be improved. However, this improvement is
necessary, since our scheme has achieved a good detection probability.
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Figure 8. The theoretical and practical cheating detection probability of a multi-round cheating detection processes.

6.4. Real System Test on TCloud and TCluster

In this subsection, we study the feasibility of the proposed method in real cloud systems (TCloud and TClus-
ter). As previously mentioned, TCloud can provide two types of VMs (single core CPU of 2.8GHz and dual core
CPU of 2.8GHz), while TCluster can only provide one type (dual core CPU of 2.4GHz). The CPU frequencies of
VMs in these two clouds cannot be modified, since the cloud environments do not provide the programming interface.
Therefore, we focus on the gap between the actual task execution time (ta) and theoretical task execution time (tt) of
some given PCTs (note that the PCT includes T ∗CPUL instructions). The CPU frequency of the local PC is still set
to be CPUL = 2.5GHz, while the parameter T is respectively set to be 10s, 60s, and 100s. For each setting, five
different CPUC are used to calculate tt for comparisons with ta. Note that, since the cloud is idle (x% = 0%), we
have tt = T ∗CPUL/CPUC . Meanwhile, for each setting, we run the cheating detection program 10 times to get the
statistics of the actual task execution time (i.e., 10 samples of ta).

The evaluation results are shown in Table 3. The tt, which correspond to CPUR = CPUC , are in bold font.
For the TCloud platform, the number of CPU cores (single core or dual core) do not bring a significant difference on
the actual task execution times of the PCT, since the PCT cannot be executed in parallel. If TCloud declares its CPU
to be 3.0GHz (CPUR = 2.8GHz), this cheating can be easily detected since there is a huge time gap (more than
10%) between ta and tt. However, there is still a considerable performance gap when TCloud honestly declares its
CPU to be 2.8GHz. The overhead (e.g., burst programs from the OS) is not ignorable. The ta of a VM with 2.8GHz
CPU is closed to the tt of a VM with 2.6GHz CPU. Therefore, a CPU resource of 0.2GHz may be considered to
be the overhead. As for the TCluster, the actual task execution time is very closed to its theoretical one. Remarkable
gaps exist between the ta and the tt (for both CPUC = 2.2GHz and CPUC = 2.6GHz). Therefore, cheating can
be easily detected in TCluster. The evaluation results show the feasibility and validity of the proposed scheme.

7. CONCLUSION
In this paper, we propose a method to detect whether the cloud is providing the correct amounts of CPU

resources that the client has paid for. Our solution is based on task execution time comparison: a PCT is constructed
for the cloud to execute; since the amount of calculation of the task is known, the gap between the actual and theoretical
task execution time can be used to judge whether the cloud is cheating or not. The PCT is based on time-lock puzzles,
so that the task cannot be simplified by the cloud to reduce the amount of calculations. Further analysis shows that, in
our model, it has a higher probability of detecting cloud cheating using small-scale and short-length cheating detection
processes more frequently than using large-scale and long-length cheating detection processes less frequently. We also
build a primary model for the fluctuation of the cloud CPU with respect to time. Our evaluation shows that the cheating
detection scheme is not memory-intensive, and is applicable to real-world cloud cheating detection.
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Table 3. Evaluations in TCloud and TCluster.

Configurations
Actual task execution time (ta) Theoretical task execution time (tt)

(statistics of 10 samples) (each sub-column corresponds to a different CPUC)
min mean max 2.2GHz 2.4GHz 2.6GHz 2.8GHz 3.0GHz

TCloud T=10s 9.64s 9.67s 9.78s 11.36s 10.42s 9.61s 8.93s 8.33s
single core T=60s 57.90s 57.97s 58.06s 68.18s 62.50s 57.69s 53.57s 50.00s
@2.8GHz T=100s 96.43s 96.53s 96.66s 113.64s 104.17s 96.15s 89.29s 83.33s

TCloud T=10s 9.64s 9.66s 9.68s 11.36s 10.42s 9.61s 8.93s 8.33s
dual core T=60s 57.87s 58.00s 58.65s 68.18s 62.50s 57.69s 53.57s 50.00s

@2.8GHz T=100s 96.46s 96.66s 97.96s 113.64s 104.17s 96.15s 89.29s 83.33s
TCluster T=10s 10.16s 10.23s 10.68s 11.36s 10.42s 9.61s 8.93s 8.33s
dual core T=60s 61.00s 61.09s 61.48s 68.18s 62.50s 57.69s 53.57s 50.00s

@2.4GHz T=100s 101.55s 101.71s 101.81s 113.64s 104.17s 96.15s 89.29s 83.33s
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