

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

International Journal of Cloud Computing and Services Science (IJ-CLOSER)

Vol.2, No.4, August 2013, pp. 249~275

ISSN: 2089-3337  249

Journal homepage: http://iaesjournal.com/online/index.php/ IJ-CLOSER

OPENICRA: Towards A Generic Model for Automatic

Deployment and Hosting of Applications in the Cloud

Gadhgadhi Ridha*, Cheriet Mohamed*, Kanso Ali**, Saida Khazri*

*Synchromedia Lab. for Multemedia Communication in Telepresence,

École de Technologie Supérieure, Montréal (QC), Canada

** Ericsson Research, Montréal (QC), Canada

Article Info ABSTRACT

Article history:

Received Jun 12
th

, 2013

Revised Jul 20
th

, 2013

Accepted Jul 30
th

, 2013

 Cloud Computing offers a distributed computing environment where

applications can be deployed and managed. . It is characterized by its

scalability, elasticity and widely-spread use. Although the choice of

such an environment may seem advantageous enough, several

challenges still remain, mainly in terms of the automated deployment

process of applications. This paper focuses on the design and the

implementation of a new generic model for application automatic

deployment, called OpenICRA, to mitigate the effects of barriers to

entry, to reduce application development complexity and to simplify

cloud services deployment process. We conducted two case studies to

validate our proposed model. Our empirical results demonstrate the

effectiveness of OpenICRA to automate and orchestrate the

deployment process of different applications without any

modification in their source code and optimize their implementation

in terms of performance in heterogeneous Cloud environments.

Keyword:

Cloud computing, Generic

Model, Automated

Deployment, Cloud Migration,

Scalability, Vendor lock-in.

Copyright © 2013 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Gadhgadhi Ridha

Synchromedia Laboratory for Multimedia Communication in Telepresence

École de Technologie Supérieure, Montréal (QC), H3C 1K3 Canada
E-mail : rgadhgadhi@synchromedia.ca

1. INTRODUCTION

Cloud computing is a computing paradigm based on the ―on-demand‖ provision of computational

resources via the network, with a pay-as-you-use billing model. This concept, which we refer as a

springboard for technological innovation, is essentially based on grid computing, SOA technology, and

obviously on virtualization [1]. This paradigm is revolutionizing the computing world and is considered as

the architecture of the next generation of entrepreneurial activities. For the time being, many companies are

seeing substantial interest in the cloud. It is primarily a financial aspect, but it also allows a company to focus

on the heart of the business. One of its most attractive features is the on-demand scalability of capacities and

resources with no upfront investment. With the advent of commercial solutions such as Amazon EC2 and S3

[2], Google App Engine [3] and Microsoft Azure [4], the cloud has become more than just a concept, it is a

reality. In addition, the combination of the latest technologies of cloud computing can considerably reduce

costs, ensure scalability and flexibility of services as well as improving application performance.

Furthermore, in a cloud infrastructure, users can access applications from any device everywhere, and pay

only for the services that they have really used. Due to its advantages, companies are more likely to extend

their technical infrastructure by adopting cloud computing. Although the choice of such an environment may

seem advantageous enough, developers are faced with many challenges; especially with regard to migration

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

250

and deployment in the cloud of applications and services, regardless it is a private, public or hybrid cloud.

Indeed, the deployment of applications in the cloud is a very complex process given the large number of

operations required to enable a successful deployment [5]. The restructuring of each application layer for the

cloud, the automating of the deployment process, the auto-scaling of services depending on the demand and

the optimization of various application services to take advantage of the cloud benefits are among these

operations.

According to the survey conducted by North Bridge [6], vendor lock-in and interoperability are

respectively the third and fourth major concern inhibiting adoption of cloud computing. Which brings us to

the main questions, how can we avoid vendor lock-in? And how can we ensure the interoperability and

portability of applications in the cloud? Similarly, according to HP [7], deployment activities occupy up to

40% of the operator working time, while the repetition of routine tasks occupies up to 70% of network and

database administrator‘s time. This is explained by the fact that most applications use several services and

they have a complicated architecture, often composed of a database, a middleware and other configuration

components. Also, each service imposes unique requirements on the IT environment that hosts it. In the same

way, to deploy an application in the cloud, a good preparation of the target environment is essential to be

compatible with its architecture; however, to migrate an existing application to the cloud, a difficult

reconfiguration of the connectivity of the application‘s different entities and the scalability is often required.

Further, unlike traditional solutions, where IT services are in a good physical, logical and personnel control,

cloud computing outsources the applications and the databases to large data centers of specialized providers.

Consequently, the adaptation of existing applications and the development of new services as well as data

management are becoming increasingly complex tasks. These processes of migration and deployment

constitute a challenge for cloud users, not only with regard to the compatibility and interoperability of

applications, but also to the development and deployment complexity in the cloud where the main issues such

as the applications scalability, the repetition of recurring tasks and the management of data storage have not

indeed well been evaluated.

As reported in [8], there is not enough work in the literature on the support of applications

deployment process in the cloud. In order to make the effective use of such an environment, it is interesting

to study how we can overcome the challenges and automate the key tedious tasks of applications deployment

in a reproducible manner with an optimization of used resources. To contribute to this field of research, our

main objective is to design and develop a new generic model of application automatic deployment in the

cloud, in order to reduce the complexity of application development, costs and time of implementation; and

to simplify the deployment process of services in the cloud. Additionally, supporting and automatically

deploying applications in the cloud by assuring elasticity, auto-scaling of applications and interoperability

with all platforms are the primary objectives of this paper. More specifically, we aim to answer all the issues

raised previously, namely i) vendor lock-in and interoperability of applications, ii) scalability of the

deployment model and auto-scaling of applications, and iii) reduction of applications deployment complexity

in the cloud.

For this purpose, we begin by developing a Platform as a Service (PaaS) based on open sources

technologies. This platform, namely OpenICRA, is a cloud model that will have to provide developers a

programming environment, available immediately to automatically create and deploy applications on the

cloud, in a record time, with less complexity and constraints at both development and deployment levels.

This offers the developers the opportunity to focus on the implementation of the application logic and adding

features rather than configuring operating systems, servers and development tools. The focus on the use of

open source stacks of software and technology and excluding proprietary solutions allow building an

extensible, elastic and operational platform on any cloud environment. This ensures the freedom of choice,

including the freedom to deploy any application developed on other PaaS (if the application is not using

proprietary PaaS APIs), the independence and the autonomy of the deployment model. By completely

isolating the application from the environment of the underlying cloud and hiding the APIs and the

complexity of configuring the runtime environment, applications can be easily moved from one cloud to

another without restriction or modification of the source code. This ensures the portability of applications

both on and off the platform OpenICRA, preventing vendor lock-in on our proposed model.

The auto-scaling technology is necessary to ensure the scalability of applications deployed in the

cloud. Indeed, this technology allows to significantly improving resources utilization at the server level and

quality of service to end-user level. Therefore, the developer will be able to automatically configure the

increase or decrease of the resources capacities based on the traffic or according to the configuration of well-

defined rules of scaling. This is possible via a simple administration web interface of our platform. The

integration of load balancing technology with auto-scaling also contributes to ensure scalability and elasticity

of the OpenICRA platform and thus guaranteeing the QoS.

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

251

The automatic deployment challenges are solved by the development of modules and extensible and

customizable classes describing the functioning and the dependence of the different components and

application services to be deployed on the cloud and by that resolving the problem of the repetition of tedious

tasks and allow automating the applications deployment process. The classes developed should include a

description of the monitoring and the automatic scaling rules of services and computing resources and

storage. This simplifies the deployment, accelerate the implementation of applications and reduce the

deployment complexity and errors as well as costs. Furthermore, our model incorporates real time monitoring

tools to monitor the evolution of the deployment and the performance of applications deployed by our

platform on heterogeneous cloud environments such as Amazon Web Service [9], GSN [10], etc.. By this, we

verify the functioning of services and trigger the appropriate corrective methods in case of need.

The remainder of this paper is organized as follows: in Section 2, we survey the litreture for related

work. In Section 3 we present the different methods we used to implement our approach, and the details of

applications automatic deployment‗s process in the cloud. Section 4 illustrates the assumptions and the

design of the proposed platform, OpenICRA. In section 5, we present the storage solution of big data

management in the Cloud. Section 6 illustrates two concrete case studies of automation deployment and

migration to real cloud environments, and discusses the experimental results conducted to validate our

appraoch. Finally, our main conclusions and future work are drawn in section 7.

2. RELATED WORK

 As there are no standards that define the use and the development of cloud services, Application

Services Providers (ASP) are facing several difficulties in migration, deployment and portability of their

applications. Indeed, there is several initiatives of standardization aimed to normalizing the situation, but any

consensus has been reached [11]. Numerous solutions have been proposed based on the use of intermediate

layers for isolating applications from the variability of some services offered by cloud providers. However,

when these tools are proprietary, they can build applications that work only on a specific infrastructure.

These approaches are therefore a partial solution to this problem, because they contribute to the risk of

moving the effect of vendor lock-in from the cloud provider to the deployment tools. In this Section we

survey the various solutions for the deployment problem and discuss their advantages and limitations.

 In [12], the authors proposed an approach to migrate ―.Net‖ applications of n-tier architecture to

Windows Azure platform. The proposed solution based on a classification of different migration tasks in

categories indicating the main factors that affect the migration cost. This proposal is a good initiative to

simplify for the developers the migration of their application in the cloud. However, it only provides some

techniques to migrate a particular application to be deployed in a specific environment (Windows Azure) and

it does not provide any reduction of deployment complexity and requires a proficiency of the application to

be migrated and a lot of effort to reconfigure it in the target environment.

 The mOSAIC Project [13], is an initiative reference financed by the European Commission under

the FP7-ICT program, that propose a solution to offer cloud users the freedom to choose the programming

languages as well as the IT resources. It mainly deals the mechanisms normalization of applications

development and deployment in the cloud. This work is characterized by its robustness and is based on an

open source API and platform for developing applications in the cloud. However, this approach supports only

the new applications compatible with cloud environment and doesn't provide any mechanism to migrate

existing applications. In addition, it doesn‘t include either APIs or tools for automatic deployment and

management of applications on the cloud to avoid the recurring administrative tasks.

 The Elastic-R solution proposed in [14] is a platform as a service that allows teachers and students

the allocation of virtual machines on the cloud through a standard Web browser to use statistical and

mathematical environments such as R [15] and Scilab [16]. This solution provides a distributed services for

collaboration, resources sharing and interactive teaching techniques that allow educators to create their own

cloud e-learning tools. However, it's only compatible with Amazon's EC2 [2] and it's limited to provide only

mathematical and statistical computation services based on the R and Scilab environment. Moreover, it is not

extensible to support other services and does not offer portability of created services, since they can work

only with Amazon Web Services.

 In [17], the authors developed a PaaS platform to manage computing resources of university

laboratories in a private cloud. The main goal of this work is to resolve the problem of limited access of

softwares. Using virtualization and resource sharing mechanisms, the proposed solution allowed to meet the

needs of students to remotely access to the applications. However, this solution is implemented in a specific

way and adopted to a particular environment. In addition, the architectural model is not generic and cannot be

implemented for other IT infrastructure.

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

252

 In [18], a survey is presented, whose the main goal is to understand how to use efficiently PaaS

models in cloud environment. A detailed comparison of different cloud platforms has been exposed based on

several aspects such as architecture, features, supported applications, etc. The authors showed through this

work the importance of the use of open source platforms. Indeed, they explained that this type of PaaS has

the potential to democratize web development by allowing everyone who can use a browser to program, test

and easily ameliorate their Web applications. In addition, they demonstrated that an open source PaaS

solution adapts with the industry standards and enables applications to be deployed across multiple cloud

providers. This investigation promotes and motivates developers to use open source PaaS to benefit from

their portability and flexibility characteristics. However, none of the solutions presented in this survey is

based on an approach to automatic deployment applications on the cloud.

 Other works focuse on the analysis of existing challenges such as; the problems of interoperability

and portability of applications in the cloud. Various solutions are proposed in this field: Open Cloud

Computing Interface [19] is a set of specifications that enables the tools development to perform common

management tasks of cloud systems including; deployment, auto-scaling, monitoring and network

management. The proposed API by OCCI is supported by various cloud computing projects like Eucalyptus,

OpenNebula and OpenStack [20]. This approach of standardization aims to ensure both interoperability that

allows different cloud providers to work together without any restriction or reserve, and application

portability allowing customers to switch easily between providers based on business objectives (example,

cost) to promote competition. It should be mention that OCCI began as an API for managing cloud

infrastructures [19] and can be used with other cloud models such as PaaS and SaaS, but the author in [21]

affirmed that the OCCI standard is not yet ready for PaaS.

 In [11], the authors have shown that there is not enough efforts that have been made in the

standardization of development methodologies to ensure portability and compatibility of applications in

cloud environments. Furthermore, they explored an alternative solution based on the use of software

adaptation (SA) techniques whose different guidelines were presented as the basis of an approach that

promotes interoperability and application migration to the cloud thereby avoiding vendor lock-in. This

approach can be applied to identify and resolve the sources of mismatch of application deployment code in

cloud environments. Despite the importance of the adaptation of software components in different execution

environments, this work lack of being integrated into a PaaS platform, so that developers can use this

algorithm. An alternative proposal for aplications development based on software adaptation presented in

[22]. It allows applications to be deployed indifferently on any cloud environment. The segmentation of the

application modules serves to facilitate the deployment and redistribution of the application in heterogeneous

environments. Interoperability between interdependent components deployed in different clouds is achieved

by automatically generating the necessary communication services. This solution provides developers the

portability of their applications and the interoperability of related services. However, it does not offer any

orchestration services of tasks, although it uses a deployment mode where application components are

distributed in different cloud environments. This takes considerable time specifically at the configuration and

establishment of communication services, because they come from different sources and geographical areas.

Thus, this approach may increase application developpement complexity.

 In [23], the authors described the challenges of cloud computing, considering the industrial efforts

and propose an interoperability model between cloud environments. Among these challenges, we mention the

need to achieve cloud services integration through the principles of SOA technology. The authors proposed

an orchestration service as an intermediate middleware layer to solve this issues. Indeed, portability was seen

as a particular challenge of interoperability. From this perspective, the incoherent use of the term

―interoperability‖ to refer to the two concepts can be justified. However, two main definitions were proposed

in [24] in terms of interoperability. The first is the horizontal interoperability defined as the ability of

communication between two services of the same cloud model (IaaS/PaaS/SaaS). And, the second is the

vertical interoperability defined as the ability to deploy a service on another model of lower cloud like a SaaS

application ported in different platforms PaaS.

 The common factor in all this works is the desire to create an intermediate abstraction layer that

decouples applications from proprietary tools imposed by cloud providers. In this case, developers create

their applications using this intermediate layer which is an independent platform that hides proprietary APIs

of vendors. Thus, the intermediate layer prevents developers from linking to programming languages, file

formats or storage of specific data. In summary, some studies proposed an abstraction of specific

infrastructure to support applications migration from one cloud to another, but they have not addressed the

issues of portability and interoperability. Others have addressed the problem of interoperability by proposing

solutions to standardize cloud services. However, no consensus has been established. The difficulties in

adopting these standards are the consequences of the lack of providers‘ acceptance like Google, Microsoft,

Amazon and others because they want to offer differentiated services to attract more customers. Furthermore,

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

253

the definition of standards at IaaS level, which is not an easy task, does not fix the problem of application

portability, since each platform has its own interoperability with a specific tools and frameworks. Similarly,

most of the proposals aim to create and develop new applications in the cloud, but none of these proposals

provides services that allow the migration of existing applications. Eventually, none of these works supports

the automation of application deployment in the cloud and there are no orchestration services to avoid

repetitive and tedious tasks.

 In this context and being built on open source technologies, our proposed model OpenICRA is

designed to allow the developer to choose to move from a traditional environment to the cloud and vice

versa. For this purpose, only open source languages and standard tools are used without any integration of

proprietary API, technology or resources in our model. This ensures interoperability between cloud

environments and applications portability both within and outside of OpenICRA, preventing vendor lock-in

on our platform. OpenICRA includes a set of command line tools that provide full access to the developer

interface. These tools are easy to use and scriptable for automated interactions. This proposed solution also

includes a rich web console‘s interface for management and orchestration in parallel and in real time for all

nodes in a cluster, reducing the complexity of applications development and management tasks. Our generic

model is able to migrate and deploy existing applications in heterogeneous cloud environments and provides

automation services of recurring tasks by triggering actions in real-time in a cluster of nodes. To fully benefit

from the elasticity of the cloud, OpenICRA provides horizontal auto-scaling of resources based on the

applications load variation which eliminate the manual operations by adding or deleting instances of virtual

machines or application containers. The table below give a summary about the main services provided by our

proposed platform, OpenICRA, compared with the major existing solutions in the littréture and which related

to the field of application deployment and migration in heterogeneous cloud computing environments.

Table 1. Comparison between the main services offered by OpenICRA with those of the major existing

solutions of application deployment in the Cloud

Platform

Services

mOSAIC

[13]

Elastic-R

[14]

OCCI

[19]

Cloud

Development

Framework

[22]

Amazon

Elastic

Beanstalk [9]

OpenICRA

Interoperability /

Portability

+ - + + - +

Auto-scaling - + - + +

Automatic deployment - - - - - +

Application

developpement

+ +/- + + + +

Existing application

migration

- +/- + - - +

Storage Management - + - - + +

3. AUTOMATIC DEPLOYMENT OF APPLICATIONS IN THE CLOUD

In the light of the issues and objectives described in the first section, we have proposed a new

generic model for the automatic application deployment in the cloud. This model allows the reduction of

programming efforts, time and costs required to implement applications using a management and automation

functions. This accelerates the deployment process and ensures the flexibility and scalability of deployed

applications with high availability. In the following, we will present the various methods used to achieve our

goals as well the automatic applications deployment process details.

Our proposed model is composed of three key architectural components: Cloud Manager, Cloud

Controller and Datanodes. The Cloud Manager is responsible of the provision of computing resources and

storage as well as the execution of tasks requested by the Cloud Controller. The latter is the brain of the

model and handles the automation of application deployment, the scaling, the management and the control of

the system. The datanodes are the nodes that host the framework templates and applications data. All the

comminucation is carried based on the Advanced Message Queuing Protocol (AMQP), hence the

components are interconnected through the ActiveMQ queues server, and the client and servers of

MCollective orchestration software. The redundancy and scaling methods are used to provide high

availability, scalability and extensibility of the model and applications deployed by our proposed PaaS

model. The utilization of an open ecosystem of deployment and the integration of frameworks and extensible

modules allow the model to ensure application portability and avoid vendor lock-in.

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

254

3.1. Automatic application deployment process in the Cloud

In order to reduce the deployment complexity and errors, to accelerate the applications

implementation and to reduce costs, we used extensible and customizable modules and classes to automate

applications deployment in the cloud, allowing developers to describe their applications, services and their

interdependencies as well as monitoring and scaling rules of their services, computing resources and storage.

Consequently, the deployment and the configuration management of an application in the cloud becomes a

simple process, which occurs in three main steps as shown in Figure 1.

Figure 1.Automatic application deployment process

Step 1: Application deployment’s preparation

The first step of the deployment process consists to:

 describe the provision of required computing resources to the application deployment in cloud

environment (public or private);

 prepare binary files or source code required for application services;

 describe the life cycle of the application and its services in modules and classes;

 describe the monitoring and scaling rules of the application and its services.

Regarding the description of the resource provisioning, life cycle of the application and its services

as well as monitoring and scaling rules, the developer can reduce the development time of modules and

classes using existing and reusable modules and personalize them as needed. Alternatively, if he has some

prerequisite knowledge, he can build a typical module using the declarative configuration language of the

Puppet. These modules are used to define the desired deployment state of application and its services in an

automatic manner. In addition, the developer can use these modules to deploy distributed applications in

physical or virtual cluster nodes as well as in traditional or cloud environments.

Step 2: Automatic deployment of services and applications

The second step is that of the automatic application deployment in the cloud. It consists to

automatically trigger the deployment by a single action of a clic on a button using the web console or by

typing a simple command using the command line tool "synchro". Among commands used, we cite « synchro

run X -I rgadhgadhi@synchromedia.ca -p qwerty », « synchro app create -s icra ctad mysql-5.1

phpmyadmin-3.4 -I rgadhgadhi@synchromedia.ca -p qwerty », etc. The first command is used to trigger the

automatic deployment of an appplication by launching the X script created by the developer, while the

second command is used to create a scalable and customizable template of CTAD type with MySQL and

PHPMyAmin applications for database creation. This CTAD template type allows the developer to install

any application compatible with Linux systems. The "-I" and "-p" options are used for developer‘s

authentication by the cloud controller.

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

255

In short, this step consists to:

 automatically provision computing and storage resources from selected Clouds using Cloud

manager ;

 auto-install Puppet agents in provisioned containers or virtual machines;

 trigger the application deployment by the Cloud Controller using MCollective application.

After the triggering of deployment by the Cloud Controller, each Puppet agent contacts the server

(master) and downloads the latest configuration and applies it in order to achieve the desired and defined

state by the developer. The Puppet clients are the installed agents by the Cloud Manager in the provisioned

resources (containers or virtual machines), while the Cloud Controller is the one who orchestrates all the

components of the platform through MCollective. When clients start to apply the new configuration, they

create the template corresponding to the application type that will be deployed and they install its frameworks

and services. Subsequently, they set up the application, the monitoring and scaling rules and they ensure that

this configuration is synchronized with that desired by the developer. Once completed, each client starts to

send the deployment status indicating whether there are errors to be corrected or successful deployment. It is

important to point out even for the development of new applications or new components of an existing

application, the update can be done in an automatic manner through the differential synchronization

techniques between local versions "on-premise" and those in the cloud.

Step 3: Deployment monitoring and management

This final step consists to monitor and manage the deployement using the web console interface or

the terminal (CLI) of the platform. Thus, the developer can evaluate the automation and supervise the

availability and performance of the application using the default monitoring tool. It is possible to integrate

other tools for effective monitoring with open source API of Puppet to generate detailed reports of the

deployment result to ensure governance, conformity and control.

3.2. Avoiding vendor lock-in and enabling portability

In order to ensure freedom of choice, including the freedom to deploy developed applications on any

other PaaS, our proposed model shall be designed and built using open source software and technology

stacks. For this purpose, only open source frameworks and technologies will be used and no proprietary API,

technology or resource will be integrated into our automatic deployment model. Based on developer request,

the proposed PaaS should provide a higher-level control, since it will have access to the underlying

infrastructure. Otherwise, this platform will hide the resource configuration complexity using an abstraction

layer and best practices to meet the needs of users who have less advanced requirements. In addition, the

integration of computing resource provision tools such as Boxgrinder and VMbuilder with Cloud Manager

will allow the designed platform to support various public Clouds (GSN, Amazon EC2, Windows Azure,

Rackspace...) and private clouds (OpenStack, VMware vCenter, Citrix XenServer...). By completely isolating

applications from underlying cloud environment and hiding APIs and the complexity of configuring the

runtime environment, applications are easily moved from one cloud to another without any restrictions at any

time. This allows us to achieve our goal of minimizing vendor lock-in.

The proposed platform includes free and unmodified programming languages and frameworks. This

means that the developed application on this platform can be easily moved to other environments supporting

the same programming languages. For example, Ruby or JBoss applications running on our platform can be

moved to independent implementations of Ruby or JBoss in data centers. The developer can deploy his

application in the cloud without making changes in the source code regardless of the used software stack

(Java/spring, Java EE, Ruby on Rails, PHP...), database (relational like MySQL or Non relational such as

MongoDB or Apache Cassandra), or any other component that the application uses. Also, the developer can

use its own programming languages and different types of databases by leveraging the powerful of Cloud

extensibility and the ability to customize templates if the offered support of preconfigured languages by the

platform not suits him. Using the CTAD and Puppet integration with the distributed version control system

Git, the developer can deploy in the cloud almost any program or any binary that runs on a Linux or even on

Windows platforms. This allows us to achieve our goal of deploying applications in the cloud without any

code change with portability guarantee of applications both in our platform or on any other platform, which

preventing the vendor lock-in in our generic model of automatic applications deployment in the cloud.

3.3. Redundancy approach

Both stateful and stateless modes can be used to describe whether a machine or service is designed

to note and retain one or more preceding events in a given interactions sequence with user, program, or any

other external elements. Furthermore, stateful means that the computer or program keeps track of the

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

256

interaction state, by setting values in a storage field designed for this purpose. While stateless means that

there is no record of past interactions and each request must be handled or treated based only on the

information that comes with this request.

In this context, our proposed model will be designed with redundancy approach in mind by using

stateless components. Redundancy serves two goals, which are high availability and scalability. The main

components of the system certainly can all be separated in different hosts and multiplied for redundancy.

Thus, each architectural element may be implemented redundantly. Data nodes are by default scaled and

should operate in a redundant architecture. Cloud Controller and Cloud Manager Applications are stateless

and are implemented behind a simple load balancer. The messaging service is also stateless and

Puppet/MCollective is configured to use multiple ActiveMQ endpoints. Multiple MongoDB instances are

combined in a cluster of servers (Replica Set), which implements the master-slave replication and automatic

failover for high availability and fault tolerance. Figure 2 shows the redundancy approach of the proposed

platform.

Figure 2. Proposed architecture with redundancy of key components

3.4. Auto-scaling applications

The horizontal scaling allows an application to react to the traffic evolution and automatically

allocate resources according to the demand. This is accomplished by using the load balancer. At the time of

application creation or deployment, the developer must specify whether the application is scaled or not. If

deployed or created application is not scaled, it occupies only a single container in a data node and all traffic

will be sent to this container. However, when the developer creates an application with scaling, it provisions

two containers, one for the load balancer, and the other for the real application. If the developer adds other

templates like MongoDB or MySQL to its application, they will be installed within their own containers. As

shown in figure 3, the load balancer hosted in a dedicated container is located between the application

container and the Internet and forwards web traffic to the developer application.

When traffic increases, the load balancer notifies the PaaS‘s cloud controller that it needs additional

computing resources. The cloud controller checks the available resources in the PaaS system and then sends a

request to the cloud manager to create another copy of the developer application in a new container. In the

case that there are no available resources, the controller still sends a request to the cloud manager to

provision one or more data nodes. Afterward, cloud manager must create a new container for the new copy of

application. To synchronize the updates made it by the developer of all application copies, the source code in

the repository of the distributed version control tool Git will be copied in each new container. When the new

copy of the application is started by invoking automatically the hooks, the load balancer starts routing web

requests to this new instance. If the developer pushes a code change to the application via the Git tool, all its

running instances will be updated automatically.

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

257

Figure 3.Auto-scaling : Inter-container TCP communication

The scaling algorithm can be based on the average response time, on the CPU utilization or on that

of the memory. It allows automatically increasing or decreasing the capacity of resources based on the

conditions defined by the developer. With the method of auto-scaling, the developer can make sure that the

number of application instances increases continuously during peak demand to maintain performance, and

automatically decreases when the applications load decreases to minimize costs. For example, the developer

can set a condition to add new application instances to the application cluster when the average CPU

utilization reaches or exceeds 80%, and similarly, he can set a condition to remove application instances

when the average CPU usage drops below 20%. The developer can also define a condition of autoscaling

based on the average response time. Thus, the load balancer adds another container in the application cluster

if the average response time exceeds a threshold, for example, of 0.5 ms, and it removes the container if the

average response time drops under this threshold for several minutes. This process is repeated and the load

balancer continues to add or remove containers based on the application traffic. It is important to note that

there are other approaches to implement the auto-scaling technique, which are based on the memory usage

and the number of simultaneous requests that can be used by the load balancer. Also, the addition and

deletion thresholds of containers are configurable and can be adjusted according to the needs of the

developer.

4. ARCHITECTURAL DESIGN OF THE PROPOSED PAAS MODEL: OPENICRA

Our research work consists in designing and developing a new generic model of automatic

applications deployment in the cloud. To reach this goal, we propose to use three main architectural

elements, which are:

 a PaaS allowing migration and deployment of applications in the cloud;

 a configuration management tool to automate the deployment and avoid the repetition of tedious

tasks;

 and a distributed file system to facilitate data sharing and management in the cloud.

Given the huge variety of deployment scenarios, platforms, configurations and applications in

production environments, it is difficult to found a full customizable tool, which meets our needs. An

alternative solution for personal and commercial purposes involves using Open Source softwares. These open

source softwares offer two key advantages for organizations, first of all, they are open and extensible, and

secondly, they are free. It is important to note that the choices of technological solutions for the design of our

generic model of application deployment are based on high-level qualitative comparisons. These solutions

are the key architectural components of our proposed model, and provide a high level of flexibility,

scalability and performance. Unlike commercial solutions, these components are characterized by the free

access to their source code. This allows us to guarantee the portability of deployed applications in any

runtime environment, ensure evolutivity of the model, avoid vendor lock-in and facilitate the process of

applications deployement in the cloud. In the following, we present assumptions and design of the proposed

model as well as architectures of its various components.

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

258

4.1. Assumptions

This section describes in detail our design assumptions of the proposed model.

 The OpenICRA system is built only from open source components such as HAProxy, Puppet,

Boxgrinder, etc. Thus, no proprietary technology, API or resource is integrated into the system.

 The system uses the resources of the GreenStar Network (GSN) project as an infrastructure as a

service controlled by the cloud management software, OpenGSN. The system is also compatible

with any cloud environment such as Amazon EC2, Rackspace and GoGrid.

 The system uses a distributed file system in IaaS level to meet the increasing demand of data

processing of the underlying infrastructure.

 The telecommunications module developed within OpenICRA interacts with external VoIP

providers such as Google Voice for outgoing calls and IPKall for incoming calls. It also uses a local

PABX based on Asterisk server to provide SIP calls. These servers are designed to interconnect the

deployed application with VoIP and PSTN networks.

4.2. Global architecture of the proposed model

The proposed model OpenICRA is a platform as a service (PaaS) that automates and orchestrates as

much as possible the deployment of applications in the cloud. It incorporates a large variety of services and

advanced technology to ensure the scaling of applications and a good quality of service (QoS) for the end

user. This model sits between the application and cloud environment chosen in caring for infrastructure,

management and configuration of required resources, leaving the developer focused only on the development

and the improvement of his applications.

OpenICRA implements a layerwise architecture, which hides the implementation details and

simplifies deployment process as shown in Figure 4. This architecture is composed of a Cloud Controller, a

Cloud Manager and several Datanodes. Each component is a Linux machine configured with SELinux

security module and which performs communication processes to form a cluster of nodes. Famework

templates of different programming languages are hosted in datanodes. They are characterized by their

extensibility allowing developers to add new frameworks to support the deployment of any type of

application. The hosted modules in the Cloud Controller allow developers to migrate their applications to the

cloud without making any changes in the source code, regardless of programming language (PHP,

Java/Spring, Python, Ruby on Rails...), databases (relational such as MySQL, or NoSQL such as MongoDB

and Cassandra Apche) or any other software stack used.

Application is composed at least of one framework which is contained in a template and running in

one or more application containers. Additional templates can be added to the application in one or more

different containers. Using SELinux, users have only permission to change their own application files. Thus,

user accounts are accessible via SSH for secure communication between the developer's machine and

OpenICRA environment. OpenICRA is based on open source components and does not use any proprietary

technology. As a result, it supports portability and can run applications on any cloud infrastructure such as

GSN, Amazon EC2 or with cloud management software, like OpenStack. In addition, user application can be

exported from OpenICRA platform to be deployed on any other platforms.

4.3. Cloud Controller

Cloud Controller is the brain of the OpenICRA system. It handles the creation, management and

general orchestration of the automatic deployment of applications, including user authentication and

communication with Cloud Manager and data nodes. It manages DNS service and applications metadata.

Therefore, users do not have direct contact with the controller, but they use the web console or the CLI tools

to interact with the API via the REST architectural style or SSH. The controller handles itself services offered

to applications and users. These services are divided into three sections, which are authentication, metadata

and domain name service (DNS). In addition, it uses three separate interfaces in order to interact with

different systems as shown in Figure 5.

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

259

 OpenICRA Architecture

Open Source Ecosystem

 No Lock-In Languages &

Frameworks

Templates & Modules-Based

Extensibility

Cloud Controller

Deployment Orchestration Authentication
Dynamic

DNS

Cloud Manager

Provisioning Scaling
Monitoring

P
a
a

S

Ia
a
S

Figure 4. OpenICRA‘s Global architecture

Figure 5.Cloud Controller

Authentication: This interface is used to manage authentication and authorization of users using LDAP or

Kerberos KDC.

Metadata: Metadata of applications, users and datanodes are stored in a NoSQL database of MongoDB.

DNS: BIND server is responsible for the dynamic management of application URLs deployed by the

developer.

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

260

All these services can be customized according the needs. Indeed, metadata storage, authentication,

and DNS server services can be implemented as plug-ins. They can be in the same machine as the controller

or in separate machines (physical or virtual). The Rails application hosted in the controller machine used to

transfer user requests from the REST API to automated configuration manager, Puppet, which is responsible

for the automation of application deployment. Thus, user can transfer deployment module of its application

to Puppet through SSH or via the web console interface. Then, he can use its CLI tool to interact with

MCollective in order to trigger the automation deployment process. Subsequently, Puppet analyzes the user

module, supplies the resources via the Cloud Manager and finally launches the automatic deployment of the

application in the cluster of datanodes. Depending on the provisioning type of resources requested, user can

have full control of the virtual machines or only the rights to change files of his applications.

4.4. Cloud Manager

Cloud Manager is the manager of cloud resources. It is an abstraction layer for the underlying cloud

environment. It communicates with the cloud controller through MCollective to meet the needs of users in

terms of provision of computing and storage resources. Figure 6 shows a logical view of its various

components.

Figure 6. Cloud Manager

Cloud Manager is responsible for interfacing with cloud infrastructure to provide on demand

computing resources, which are required for application functioning. It uses Boxgrinder and VMBuilder tools

to create new virtual machines or containers, where application files will be hosted. Thus, it connects via

SSH to the provisioned ressource to automatically install the Puppet configuration manager tool. The latter

connects to the Puppet Master to check for new manifests to compile. The Cloud Manager also provides a

permanent supervision for applications using a monitoring tool API. The tracking results of applications can

be displayed on a dashboard using a simple browser. During resources provision, Cloud Manager provides a

load balancer template with the requested container or virtual machine. Application processes run in a

container other than that of the load balancer. This load balancer sets between the application and Internet,

and routes the requests to the application container. When demands increase, it triggers auto-scaling rules by

creating copies of the application in another container and it begins to load balance between the different

containers of the application. In the case where the demand decreases, load balancer removes all unused

application instances.

4.5. System resources

4.5.1. Data nodes

Datanodes are physical or virtual machines. These nodes are partitioned to several containers using

SELinux security module. This partionning method is based on a technique used by the OpenShift platform

team to create their containers. The datanodes host the framework templates used to deploy applications in

the cloud. They store also application files and run their processes.

4.5.2. Application Container

Application Containers are virtual partitions or virtual environments (VE) managed by the SELinux

security module and also known by Virtual Private Server (VPS). They provide limited IT resources to

perform one or more modules/templates and limit the amount of RAM and storage space for applications.

Therefore, OpenICRA system creates several containers in each datanode and dynamically affects them to

applications. Figure 7 illustrates the relationship between different system resources.

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

261

Figure 7. Relationship between different system resources

In general, an application is composed at least of a framework contained within a template which

runs in one or more containers in the case of a cluster or a scaling mode. Additional templates can be added

on demand to the application in the same or different containers.

4.6. Modules / Templates

Modules are used by the Puppet tool, which is integrated with OpenICRA to automate application

deployment, while templates are hosted in the data nodes and usually are used to create or develop a new

application in the cloud or to deploy an existing application. We define modules as directories used by the

Puppet Master to trigger automatic deployments in the data nodes through Puppet Agent and MCollective

Server or to migrate an existing application to the cloud. Templates can also be defined as containers or

directories that host framewoks or components that can be used to create or deploy applications. They are

stored in the data nodes and they support also the deployment of any binary application without source code

modification. The templates provide the real functionality needed to run the user application. Supported

programming languages are PHP, Ruby, Java, Python, etc., and several types of databases such as Postgres,

MySQL Mongo, etc.

4.7. Mechanisms of system communication

Communications from any external client (eg, SSH, Web Console) towards the OpenICRA PaaS are

performed through the REST API, which is hosted by the cloud controller. The latter communicates with

datanodes and Cloud Manager through the ActiveMQ message broker. MCollective is used to facilitate the

interrogation and orchestration of datanodes and Cloud Manager as well as to secure the communication with

the individual nodes.

5. BIG DATA STORAGE MANAGEMENT IN THE CLOUD

According to [25], a shared storage system usually refers to a shared storage disk over the network

allowing anyone on the same network the access to the server files. This means that the architecture of shared

system does not allow the horizontal scaling by adding new storage servers; it only allows the vertical scaling

in a single server. In addition, it stores all the files from the entire network infrastructure, which limits the

number of files to store. Moreover, a shared storage system cannot store all or part of a large file that exceeds

the capacity of the shared disk. These limitations make the traditional storage system non-scalable and unable

to meet the needs of a system based on the cloud computing concept. Because of the lack of dynamic

management system for storage solutions, a single storage system may encounter bottlenecks in the case of

need of a storage space to host a large image of a virtual machine or fror mass data processing.

Thus, in cloud computing environment like the GreenStar Network (GSN) [10], it is necessary to

have a computing high-speed and a scalable and efficient storage system. Moreover, in a production

environment where there are multiple servers trying to access to the same files, it is always difficult to

establish an adequate storage management architecture. However, there are various manners to share files

with multiple servers. The most beneficial ways is to implement a Distributed File System (DFS) offering to

the distributed computer users the ability to share data and storage resources. Also, distributed file systems

are made of different software components running on multiple computers, but operate as a single system.

They can be advantageous since they facilitate the distribution of documents to multiple customers and they

provide a centralized storage system.

Based on the distribution management tool of real-time data and the techniques of provision and

virtualization resource optimization, OpenICRA offers a high efficient environment for high performance

and intensive I/O applications. Therefore, an integration of a DFS with OpenICRA will provide an excellent

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

262

environment for virtual machines and applications where scalability is an issue both in terms of storage and

computing speed.

5.1. The Distributed File System (DFS)

In order to facilitate the integration of chosen distributed file system with our proposed model, it is

important to establish a set of the desired selection criteria. For this purpose, a comparative study between the

most popular and common DFSs was performed taking into account their implementation in large scale

networks of computer systems such as cloud computing, grid computing, etc. Thus, the comparison process

considers the following distributed file systems: The Google GFS [26], the Apache HDFS [27], the IBM

GPFS [28] and the Sun NFS [29]. In the literature, there are several other distributed file systems such as

AFS [30], Lustre [31], Amazon S3 [9], etc. However, they do not meet the established evaluation criteria.

The comparative study revealed that Hadoop Distributed File System (HDFS) is the best adaptive

solution to implement a management system of distributed storage in terms of performance, reliability and

adaptability. Sustained by major industrial palyers such as Facebook, Yahoo, Twitter and Cloudera, HDFS

has emerged as a solid solution that uses a highly scalable technology to meet the challenges of massive data.

Thus, it is an open source system compatible with cloud computing environment and it can be easily

integrated without any restriction with Cloud middleware of resource management, and it may also be very

useful to manage data of deployed applications by platforms as a service in a cloud environment. In addition,

HDFS is a scalable distributed file system and designed to reliably store very large files on different

machines in a large cluster of nodes. It is inspired by GoogleFS publications [26]. Its three main components

are: NameNode that stores metadata information of file blocks and the list of data nodes in the cluster,

Datanodes which host file blocks, and, Secondary NameNode which is the primary NameNode replication

and it is used in case of NameNode failure.

The HDFS integration with our OpenICRA platform provides an ideal environment for applications

that have requirements of large storage space and a high calculation speed. Examples of such applications are

hypervisors, applications of log files analysis, and applications which need high availability. Thereby, HDFS

is a better choice for use with other applications on an ordinary file system in order to have a distributed and

fault-tolerant storage.

5.2. Proposed storage system: Integration of HDFS with OpenICRA
HDFS is designed to be deployed on a less expensive hardware and it provides a high-speed access

to application data and is suitable for applications that use large data files. It offers efficient use of storage

space through compression and distribution of stored data in its cluster of nodes. Its fault tolerant architecture

provides a rapid access to large amounts of data spread across multiple servers and it provides high

scalability. Thus, our proposed storage system consists to integrate the HDFS distributed file system with our

OpenICRA platform to solve the problem of the ratio between the growth in the volume of VM images with

the performance of the compute nodes and the cloud manager.

In our proposed architecture, we configure the HDFS cluster and we implement the fuse-dfs

extension of the file system in user space FUSE on the compute node. This ―fuse-dfs‖ module provides an

interface for transferring data between compute nodes and data nodes of HDFS. In addition, virtual machines

created by the cloud manager can directly access to their virtual hard disks stored in the HDFS cluster using

the fuse-dfs module.

Not being a veritable file system compatible with the POSIX standard, HDFS cannot be mounted

directly by the operating system and the access to HDFS files is done via Shell commands. However, the

FUSE module for HDFS addresses this limitation by exposing the latter as a mount point on the compute

node. This means that we can mount the files from HDFS system to any POSIX service. Also, we can use a

remote visual client like WinSCP to explore HDFS files. Indeed, using fuse-dfs, which is one of applications

that based on the Fuse file system, we can mount HDFS as if it was a traditional Linux file system.

In order to integrate HDFS with OpenICRA, a common interface for data exchange is required that

allows the Cloud Manager to retrieve and store data in the HDFS cluster. The solution consists to use the

module ―fuse-dfs‖ as a communication channel, which connects the HDFS NameNode machine to mount the

entire distributed file system. Hence, HDFS can be mounted on the compute nodes as a traditional Linux file

system such as ext3 or ext4 and can be used to store and retrieve files using fuse-dfs. Indeed, the FUSE

module provides a "bridge" to the compute node kernel interface and, instead of using the HDFS client tool,

the standard terminal of compute node will act as a HDFS client to access its data. Also, the OpenICRA

Cloud Manager will be able to interact directly with HDFS to extract and update application data.

In our proposed storage system, we set the node name, the data nodes of the HDFS cluster and the

cloud manager on different servers. This is done to improve performance and optimize resource utilization.

Given that the fuse-dfs module should interact directly with the cloud manager, these two components must

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

263

run on the same system to avoid performance problems and to enable it access to files of HDFS system. As a

result, the fuse-dfs module is configured on the same node as the cloud manager assuming that Java JDK is

already installed on the host. Such a configuration allows undoubtedly better resource utilization for the

global storage system. The architecture of the proposed solution of storage management is shown in Figure 8.

Indeed, the Namespace manages directories, files and blocks of files and it supports file system operations

such as creating, editing, deleting and listing of files and directories. The Block Storage includes two parts,

which are the Block Management and Physical Storage (datanodes). The Block Management maintains

Datanodes adhesion in the cluster and it supports operations linked to the blocks, such as creating, deleting,

modifying and localizing of the blocks. It also supports replication of blocks. While the Physical Storage

handles the data hosting and the reading and writing access to the blocks.

Figure 8. Integration of HDFS distributed file system with OpenICRA.

The fuse-dfs module is the responsible component of HDFS mount to the compute nodes. It uses the

APIs of libhdfs library and FUSE to appear HDFS as an ordinary file system on the host machine. It also

allows arbitrary programs to access data stored in HDFS system. The Compute node is the server on which

the Cloud Manager and KVM hypervisor are running.

The proposed storage system can easily be scaled by adding or removing nodes on demand. It does not need

to make any changes to existing components of cloud infrastructure. The adding or removing of node or of

storage space is transparent to the infrastructure of cloud provider. The proposed system is therefore elastic in

nature. Thus, it can be used as a warehouse for the very large virtual machine images.

6. EXPERIMENTS AND VALIDATION

In order to test and validate our proposed model, OpenICRA, we illustrate two concrete case studies,

where the first consists to automate the deployment of OpenSAF distributed middleware across a cluster of

nodes within Ericsson Blade System [32], and the second case aims to migrate to the Amazon EC2

environment [2] the ICRA collaborative system developed by the research team of Synchromedia [33]. To do

this, we follow the automatic deployment process of applications described in section 3.1 to perform the two

case studies and present the results obtained from the real cloud environments.

6.1. Case study 1: OpenSAF deployment automation

OpenSAF is an open source middleware actively supported by major telecommunications

companies in the world such as Ericsson, HP, Nokia Siemens Networks, Sun Microsystems, etc. This

middleware helps to develop a runtime environment with high availability for applications and

telecommunications equipment compatible with the SAF (Service Availability Forum) specifications and

require uninterrupted service [34, 35]. As part of the Ecolotic project [36], Ericsson wanted to deploy

OpenSAF in a large cluster of nodes in a cloud environment to take advantage of cloud-simple functionality

wherever possible, and to provide a high availability service for developed distributed applications in the

cloud. However, due to the deployement complexity and huge varieties scenarios of OpenSAF, also the

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

264

repetitive and tedious configuration tasks of applications and services, Ericsson decided to automate its

deployment in order to significantly reduce errors and costs, to accelerate the implementation of applications

and to ensure compliance, control and governance. In this context, we used our proposed model for

OpenSAF middleware deployement automation in a cloud environment.

6.1.1. OpenSAF automation process

Based in our generic model OpenICRA designed to support different deployment scenarios,

OpenSAF automation deployment may be carried out in a process of three steps according to the application

deployment process described in section 3.1 and as shown in Figure 9. The first step is to prepare the

deployment of OpenSAF middleware. According to the official documentation, the OpenSAF recommended

configuration which allows to demonstrate its various capabilities of high availability (HA) with better

performance requires at least four servers, two machines act as controllers configured in Active/Standby

mode and at least two other machines for payloads (entities where OpenSAF manages its running

applications). In an OpenSAF cluster, a node or server may be a controller or payload and a maximum of two

controllers is allowed. Any additional node must be configured as payload in the cluster [34, 35].

Figure 9. Deployment process of OpenSAF middleware

To automate a successful deployment of OpenSAF, we developed a module called "opensaf" which

describes all the instructions required for deployment automation. This module is written in a declarative

language and it uses classes, configuration files and binary files. The binary files are used to install

dependencies when there is no Internet connection in the deployment environment. Otherwise, they will be

ignored and dependencies will be installed from the official packages repositories. The configuration files are

preconfigured templates used to ensure proper functionning, compatibility and communication between the

different OpenSAF components. However, the Classes are used to:

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

265

 request the Cloud Manager to provision the essential computing and storage resources for the

deployment and automatically install the Puppet configuration tool;

 update and install the necessary dependencies packages;

 orchestrate the cluster nodes;

 apply the recommended configuration by the system administrator.

After the preparation, the second step consists to trigger the script of resources provisioning and the

automatic deployment of OpenSAF. This program must be launched by the developer or the administrator

from his local machine via the command line tool "synchro" or through SSH session to triggering the

deployment. As shown in figure 9, the Cloud Controller is the central point of the deployment process. It

orchestrates in parallel and in real time all the components of OpenICRA system and controls all the main

deployment tasks. Indeed, it contacts the Cloud Manager to provision the required computing and storage

resources. The Cloud Manager installs and runs sequentially and automatically Puppet agent in each virtual

machine created. During the virtual machine startup, each Puppet agent contacts the controller (Puppet

Master) to download the configuration described in the "opensaf" class and apply it locally. The "opensaf"

class is developed so that it is capable to deploy OpenSAF and automatically solves all the common

problems without any human intervention.

The final step consists to monitor and evaluate the deployment. Once the deployment step is

complete, each Puppet agent sends a report to the controller. In addition, when data nodes (Puppet agents)

run to look for new configurations or updates from the controller, they return the inventory data and a report

of their executions. These reports and statistics can be viewed by the developer in the web page of each node

through the web console interface. Figure 10 shows the execution time of the Puppet demon in the controller

node.

Figure 10. Execution Time of Puppet demon in the controller node

The graph of the execution time shows how long each of the last 30 Puppet executions took to

complete the configuration or the intended deployment. A long execution usually means that there are

changes have been made, but could also indicate that the server load was heavy or there are some other

circumstances. In our case, the last run which is the longest corresponds to the OpenSAF deployment. For the

other executions, they are not long, because there is no configuration or updates to be made.

6.1.2. Result of the first case study

The main contribution of this case study is to relieve users from reading the complex installations

guides and manual troubleshooting of OpenSAF by automating its deployment in order to avoid repetitive

tasks on each server. In this section, we present the results of OpenSAF automatic deployment process in a

cluster of nodes. According to a recent survey [37] which had interrogated about 95 users from several

companies such as Ericsson, Oracle, Connectem etc., OpenSAF users are concerned by the complexity and

long duration of its manual deployment. The survey revealed that the average time required to manually

deploy OpenSAF in a cluster of nodes is approximately 138.95 minutes. Figure 11 illustrates the results of

this survey and indicates that 63.16% of respondents exceed the average duration of OpenSAF‘s manual

deployment.

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

266

Figure 11. Survey results of OpenSAF‘s manual deployment

With our proposed model, OpenICRA, we have greatly reduced the required time of OpenSAF

deployment by automating key tasks of configuration, installation, updates and resolution of common

problems. Indeed, we have successfully deployed OpenSAF in cloud environment in less than 166 seconds.

This approach of OpenSAF automatic deployment has produced measurable results where the efficiency

improvement reached 91.51%. These results are presented in table 2 which summarizes the comparison of

deployment duration before and after the automation as well as the efficiency improvement of deployment.

Table 2. Deployment duration before and after automation

Task Before automation After automation Efficiency

improvement

OpenSAF deployment ≈ 2.31 h ≈ 11.76 min 91,51 %

As a conclusion to this case study, we notice that OpenICRA has reached 91.59% of the effort and

time reduction of OpenSAF deployment and has provided an automated deployment without any human

intervention after the triggering of the process. This reduces costs and effectively accelerates the OpenSAF

middlware implementation in the cloud.

6.2. Case study 2: Automatic migration of ICRA system to Amazon EC2

ICRA (Internet based Collaboration and Application Resource) is a collaborative application based

on the web, developed by the research team of Synchromedia [33]. It allows users to establish virtual

meetings and video conferences remotely from different locations around the world to facilitate their research

and team works. Indeed, the application is equipped with advanced telecommunications interactive

technologies, enabling users to have productive discussions and to easily share digital documents, data and

annotations in real time.

ICRA and Asterisk [38] are considered as competing applications for various services, while in

reality, Asterisk can be complementary to ICRA application. The integration and deployment of the two

applications in a cloud environment create essentially a more scalable and more efficient collaboration

system. The selection of a free IP PBX was not complicated, because currently the major actor of the free IP

PBX is the Asterisk softswich. The aim of this case study is not to innovate on the IPBX technology. We

naturally decided to use this one since it is considered one of the most popular open sources PBX in the

world. It is also a key element of the VoIP service and it will allow the management of outgoing and

incoming voice calls.

This integration gives users an opportunity to test and become familiar with the VoIP (Voice over

IP) technology in a cloud environment and collaborative work such as real-time annotation, document and

presentation sharing, instant messaging and web conferencing. Also, it offers the ability to easily and rapidly

use advanced services such as VaaS (Voip as a Service) and CaaS (Cooperation as a Service) with reduced

cost and without client-side required software. However, one of the complexities associated with the

integration of Asterisk and ICRA is related to the large number of components to configure and migrate to

the cloud and the lack of coherent management tools. Indeed, these applications use several different services

and require a difficult reconfiguration during the migration process to be compatible with the target runtime

environment.

The main objective of this case study is to integrate the collaborative application ICRA with the

PABX Asterisk. All must be automatically deployed in the cloud environment of Amazon EC2. Thus, we

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

267

will use our proposed model OpenICRA to automate the integration and deployment of the two applications

in the cloud. This simplifies the migration process and ensures scalability, control and governance of all

system components.

6.2.1. Automatic migration process
Accordance the proposed model functioning described in section 3.1, the integration and migration process of

both applications ICRA and Asterisk can be performed in three simple steps. In our case, the goal is to

integrate the Asterisk VoIP server with the ICRA collaborative application to allow users to make incoming

and outgoing calls using centralized client web interface to any telephone systems such as IP networks,

PSTN, cellular, etc. All must be deployed on the cloud. Based on our analysis, we determined that Amazon is

the most appropriate provider due to its flexibility and elasticity. It provides virtual machines with plenty of

highly available services that utilize advanced technology and a secure access to resource via RSA keys, as

well a monitoring service such as CloudWatch. Figure 12 illustrates an overview of ICRA‘s migration

automation process.

The first step consist to understand the architecture and functionning of the collaborative system‘s

various services to be migrated to the cloud in order to ensure a successful deployment. For the softswich

Asterisk inteconnection with PSTN and cellular networks, we look for providers that allow us to receive and

make calls freely. The solution was to find a provider that includes the two features. However, none met our

expectations. So, we decided to divide the provider tasks. To interconnect the IP network with PSTN, we

need a provider which offers us a phone number.

We easily determined what would be our line provider. IPKall [39] meets our needs, it provides a

telephone number in the United States (Washington state) for free and also serviceable in Canada. For

outgoing calls, our attention will focus on the Google Voice provider as it offers the opportunity to call the

United States and Canada phone numbers for free. Therefore, we used IPKall for incoming calls and Google

Voice for external (outgoing) calls. Regarding the architecture of ICRA application, it is mainly based on

open sources components namely, MySQL, SWFTools, ImageMagick, OpenOffice.org, Red5, middleware

java (jar) and a client web interface, etc. All these components can be installed with the command line

interface on any Linux system. Therefore, their installation can be automated by OpenICRA deployment

hooks.

The ICRA client web interface is the interconnection point of all system components. It connects to

the database server and ICRA middleware through web services and ActiveMQ queue server. Also, it

connects to the streaming server via the configuration file "conf.xml" to guarantee the video conferencing

services, instant messaging, real-time annotation, etc. To automate the integration of different services and

the deployment of the collaborative system, we created a deployment hook that describes all the requirements

and instructions of the migration automation process of the collaborative system in the EC2 environment.

This hook will be used in the next step "automatic deployment" by the automatic deployment script to trigger

the integration and deployment of ICRA and Asterisk applications.

The second step consists to automatically migrate the Collaborative system to the EC2 cloud

environment. The developer can trigger the deployment from his local machine using OpenICRA command

line or via SSH connection. In our case, the developer must use the "synchro" command line tool to trigger

the deployment. A simple execution of the deployment script can trigger the automatic migration of

collaborative system. Once the deployment is triggered, the OpenICRA PaaS intervenes through its Cloud

Controller and Cloud Manager components to ensure a successful deployment. The main command behind

ICRA migration is: « synchro app create -s icra ctad mysql-5.1 phpmyadmin-3.4 -I

rgadhgadhi@synchromedia.ca -p qwerty ». This command allows creating a scalable and customizable

template of CTAD type with MySQL and PHPMyAmin applications for the database creation. Thus, this

template type allows the developer to install any application compatible with Linux systems. In our case, this

template is created in a separate container to host ICRA applications, Asterisk and PHPMyAdmin. The load

balancer HAProxy which ensures the auto-scaling is hosted in another container. Also, the database is hosted

in a different container to ensure the collaborative system scalability in case of a variation in the demand. The

"-I" option and "-p" are used for the developer authentication by cloud controller.

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

268

Figure 12. Overview of ICRA‘s migration automation process

Furthermore, the deployment hook of ICRA and Asterisk installs in automatic way the prerequisites

and services system, configure the application as desired by the developer and automatically fixes the

common problems. Once the deployment of the collaborative system is complete, the deployment hook

returns a report to the Cloud Controller which will be available to the developer through the monitoring tool

web interface.The final step consists to utilize monitoring tools provided by the PaaS platform, OpenICRA,

to ensure the progress of the proper deployment. In fact, with monitoring tools, the developer may easily

detect errors that have occurred or check if the deployment is successful. Figure 13 illustrates the overall

status of the collaborative system resources after their deployment on EC2 and shows that the two instances

are healthy with a variation of CPU usage between 0.6% and 8.59%.

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

269

Figure 13. Overall status of containers system

For a deployment on Amazon EC2, OpenICRA offers to developers the ability to use both

monitoring services, CloudWatch EC2 of Amazon [40] and RevealCloud of CopperEgg [41]. These tools are

used to provide in real time detailed information on the services and the migration process status of

collaborative system. Thus, the developer can use these services through the web interface of the controller to

check in more detail the progress status of the migration process by consulting logs tables of different

services.

6.2.2. Evaluation of collaborative work system's overall performances

In order to evaluate the stability and scalability of the collaborative system deployed by OpenICRA

on Amazon EC2, we firstly present a quantitative comparison of G-711 and G-729 codecs of integrated VoIP

module, and secondly, a stress test of the whole system.

6.2.2.1. Comparison of codecs and moving from G711 to G729

In this section, we compare the G711 and G729 codecs to identify which is the optimal for the

collaborative work system. The tests were performed with WireShark and its analysis module of RTP flow

and one of the client machines captures RTP traffic. Both catches were made at 10 minute intervals; we can

therefore affirm that the traffic and the saturation of different links involved between both SIP clients were

constant. The analysis shows a great gain in terms of the packet loss reduction since that it passes from 8-9%

of loss for the G-711 to 0% with the G-729 as shown in figure 14. As a reminder, G-711 codec uses a large

bandwidth (56-64 Kbit/s) versus G-729 which is optimized for WAN (8 Kbit/s). Regarding the latency and

jitter, there is no significant change. Our architecture depends on several providers and it is difficult to be

optimizable at this level. We can still note the correct performance, usually below 100ms with an average

around 20ms (measured values are not present in this figure).

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

270

Figure 14. Performance test of G-711 and G-729 codecs

6.2.2.2. Scalability test of collaborative system and OpenICRA

To evaluate the automatic scaling capabilities of OpenICRA model as well as the scalability and

stability of collaborative system when demand increases with the number of users, we conducted a stress test

in order to measure under severe operating conditions the overall performance of containers hosted in a

datanode of OpenICRA on Amazon. Further, we present in this section the followed steps to perform the

stress test and the different results recorded.

In fact, a good stress test for the ICRA collaborative work system consists in generating a large load

with multiple users. For this, we have chosen to perform this test in the Synchromedia laboratory [10] using

its facilities and a customizable Shell script [42] to generate a large number of customers for overloading the

collaborative system. On each workstation, we launched several customers (between 10 and 50 clients)

connected to the same conference for overcharging the server and to monitor its behavior. Thus, measures of

CPU utilization, throughput and memory of the server were done using the CloudWatch [40] and

RevealCloud [41] monitoring tools.

In the following, we present the configuration of the stress test and the results of the CPU

utilization, memory and throughput. In addition, the datanodes configuration in our system is as follows:

 613 MB of memory;

 2 EC2 Compute Units (1 virtual core with two EC2 Compute Units);

 EBS storage;

 Platform 64-bit Ubuntu 12.04 LTS;

 71 Mbit/s of maximum throughput (network saturation when the interface usage exceeds 70%);

 Automatic scaling up by adding one or more instances, when the CPU utilization exceeds 90% (rules are

configured in the load balancer).

Regarding the results of the stress test, figure 15 shows in detail the evolution of the CPU usage rate

during the entire test period. In addition, it has increased from 6.5% when we have only 5 clients going

through 17.49% with 60 clients and up to 86% when we have 105 clients. With 115 clients, the CPU usage

rate has reached 92%, which is exceeded 90%. As a result, the load balancer has detected this overrun and it

responded by creating a new instance of the ICRA application. At the same time, the number of clients

continued to grow and the CPU usage rate too. At 10:46 p.m. UTC, the CPU rate begins to decrease. This is

due to the load balancing between the two instances of collaborative system after the auto-scaling service

outbreak.

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

271

Figure 15. CPU utilization rate of ICRA system

For network performances, figure 16 illustrates the evolution of the used throughput of data transfer

where bytes are sent and received via the network interface of the container hosted in the datanode. We

notice that this container has made a peak with an upload speed of 5.76 MB/s while the download speed is

around 120 KB/s. Thereafter, the upstream and downstream speeds were gradually decreased due to the

automatic scaling triggered by the load balancer of OpenICRA platform. In addition to the 90% threshold of

CPU, the load balancer is configured with an incrementing rule by an application instance when the network

interface's utilization rate exceeds a threshold of 70% of the maximum throughput. As the peak value of the

used throughput (5.76MB/s of upstream speed) did not exceed the threshold value (70% of maximum

throughput ≈ 6.21MB/s), the network is not considered in a saturation situation. It is for this reason, that we

have not had an outbreak of the second auto-scaling when the upstream speed has reached its maximum

value.

Figure 16. Used average throughput

Furthermore, the memory utilization rate is shown in figure 17. The active memory was initially

around 31.6% for the first group of five users. Upon reaching 60 users in the group, active memory

utilization rate has been increased to 37.8% and we even noticed an increase in the cache memory from

30.9% to 34.34% to reach a total value of 91.02%, including 18.88% of the buffer. With 115 users, the

memory total value used is around 605 MB, which is the equivalent of 98% (sum of active memory, cache

and buffer). Although the size of the active memory remains stable, we notice an increase in the cache

memory and the one of the buffer which is perfectly consistent with the CPU usage decrease just after the

outbreak of the auto-scaling by the OpenICRA load balancer. Note that the buffer is a zone of the RAM used

to temporarily store data between two processes during their moving, to compensate for differences in the

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

272

receiving rate and processing speed between two processes which do not operate the same rate, while the

cache contains only duplication of the data to reduce the data access time.

Figure 17. Memory utilization rate of ICRA server

According to this test, with 135 users connected at one time to the server, the CPU usage rate has

reached 92%, which leads to an automatic provisioning of additional resources signaled by the load balancer

to respond to the massive increase of client requests. A result of this reaction, the collaborative system has

reestablished its normal functionning through the load balancing, which contributed to mitigate the overload

of ICRA system containers. This clearly shows the scalability and flexibility of our OpenICRA system. It is

important to mention that we have stopped adding more than 135 users for reasons of material resources lack.

In short, through this complex case study that combines several decentralized services depend on

several providers such as Google Talk, IPKall, and AWS, our generic deployment model has proven its

ability to automatically deploy in the cloud of any type of application with a process of three simple stages

including preparation, deployment and monitoring. In addition, the result shows the ability of our model to

react accurately in the event of increased demand and exceeding preconfigured thresholds by triggering an

automatic scaling to reestablish the normal functioning of the deployed application and to balance the load.

7. CONCLUSION

This paper focuses on the major issues related to application deployment in the cloud, which is the

most important challenge for developers when creating a new application or migrating an existing application

to a cloud computing environment. In order to avoid vendor lock-in, to reduce applications development‘s

complexity and implementation delays, to simplify service deployment‘s process, and also to ensure the

scalability of applications in the cloud, we designed and developed a new generic model for automatic

applications deployment in the cloud. Being built on open source technologies, our proposed model,

OpenICRA, is designed to enable the developers move from a traditional environment to the cloud and vice

versa. For this purpose, only open source languages and standard tools have been used in our model and there

no proprietary APIs or technology resources that have been integrated. This ensures interoperability with

cloud platforms and portability of applications both on OpenICRA platform and on other platforms,

preventing vendor lock-in.

OpenICRA includes a full set of command line tools that provide full access to the developer

interface. These tools are easy to use and also scriptable for automated interactions. Our proposed solution

includes a rich Web console‘s interface for management and orchestration of cluster nodes in parallel and in

real time, which reduce the complexity of application developement and management. Two concrete cases

were considered to test and validate our model of automatic application deployment. The first case study

consists in automating the deployment of the OpenSAF middleware across a cluster of nodes with a full

control at infrastructure level within Ericsson environment [32], and the second case aimed to migrate the

collaborative system ICRA to Amazon EC2 [2]. The results demonstrate the superiority and efficiency of our

model to deploy different types of applications without making any changes in the source code of

applications. In addition, our generic model has shown its performance in application migration and

deployement on the cloud environment and its ability of providing automation of repetitive tasks by invoking

services with real-time actions in a cluster of nodes. To fully benefit from the elasticity of the cloud,

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

273

OpenICRA provides horizontal auto-scaling of resources based on the application load; eliminating the need

of manual operations to add or delete instances of applications or application containers. The integration of

load balancing technology with auto-scaling ensures scalability and elasticity of OpenICRA platform and

hence guarantees the QoS. Furthermore, unlike other available cloud computing solutions, such as Cloud

Foundry, OpenShift or CloudBees, this platform is not limited to the manual deployment of new applications

in the cloud. But, it can be used to automate deployment of existing applications in the cloud using

customizable and extensible modules and easily adaptable to different application architectural requirements.

This work therefore provides cloud users the opportunity to test and deploy their applications and to

be familiar with cloud services. It also provides the ability to automatically and rapidly create applications in

the cloud. Moreover, it not only contributes to the familiarization with the cloud, which is considered the

architecture of the next generation of enterprise computing, but also to the environment protection. Indeed, it

is compatible with the resources and ecoresponsible technologies of GSN, the first international project that

aims to build the first green network with zero carbon [43]. Thus, this model supports the integration of VoIP

service providers like Gtalk, IPKall, etc., and telecommunication applications deployment, particularly

Asterisk and Freeswicth IPBX that allow interconnection between IP and PSTN networks, OpenIMS and

webphone such as Mizu, ozeki, among others. Therefore, it contributes along the future vision of Ecolotic

project toward improvement of migration approaches [36].

In our future works, several other researches will be considered. As this paper aims to develop a

new generic model of automatic applications deployment in the cloud and in the vision of the Ecolotic

project, significant efforts have been invested to support the automatic migration of telecommunication

applications and services such as IMS (IP Multimedia Subsystem), WebRTC APIs and VoIP services to

interconnect PSTN and IP networks. One objective of the OpenGSN middleware is to design an autonomous

cloud management system, capable to ensure migration of services and applications to the cloud. Hence,

integration of our generic deployment model with OpenGSN could achieve this goal. This makes the solution

more independent and efficient. Also, this helps to stabilize our deployment model by considering concrete

case studies such as the migration of the open source implementation of IMS core to a real cloud

environment in Ecolotic project. Such integration will open undoubtedly the path towards other requirements,

which require more advanced system in terms of speed of application implementation in the cloud system

and deployment efficiency.

Finally, regarding the storage management in cloud environments, the way that we store data

continues to evolve in an impressive manner at both the speed and the volume levels. Therefore, companies

are looking for more effective approaches to manage big data such as images of VMs‘ Virtual Hard Disks

(VHD), etc. The DFS (Distributed File System) can be a solution to resolve the problem of the ratio between

the growths in the volume of VMs images and the compute nodes performance. Indeed, its integration at the

IaaS level of cloud environments allows us to offer an excellent solution for applications and virtual

machines where scalability is an issue in terms of both storage and computing speed. Concerning the storage

pool accessibility, the integration of some DFS not fully POSIX compliant, such as HDFS, with the

mountable module fuse-dfs resolves the data access problem by virtual machines and simplifies the

management of large VHDs images by making the storage system more efficient and more scalable. Thus, in

the perspective to obtain a powerful, a scalable and an automatically deployable storage system, that

combines the strengths of the automating process of application deployment in the cloud computing and

those of reliable warehousing of very large data files in the cloud and the high-speed access to data, we

suggest to develop a generic storage model for cloud environments using HDFS, GlusterFS, Lustre, etc. as a

distributed file system and OpenICRA as a PaaS of automatic application deployment in the cloud.

ACKNOWLEDGEMENTS:
The authors thank Rachid Hedjam, Reza Ferrahi Moghaddam and Guoqiang Zhong for their unconditional

support of this work and the Synchromedia laboratory team for the help in implementing the experiments.

The authors would like also thank the NSERC and the Canarie of Canada for their financial support.

REFERENCES

[1] L. Youseff, M. Butrico, and D. Da Silva, "Toward a unified ontology of cloud computing," in Grid

Computing Environments Workshop, 2008. GCE'08, 2008, pp. 1-10.

[2] Amazon. Amazon Elastic Compute Cloud (Amazon EC2) [Online]. Available:

http://aws.amazon.com/ec2, 2012.

[3] Google. Google App Engine [Online]. Available: https://developers.google.com/appengine/, 2012.

[4] Microsoft. Microsoft's Cloud Platform [Online]. Available: http://www.windowsazure.com, 2012.

  ISSN: 2089-3337

IJ-CLOSER Vol. 2, No. 4, August 2013 : 249 – 275

274

[5] G. Juve and E. Deelman, "Automating application deployment in infrastructure clouds," in Cloud

Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference on, 2011,

pp. 658-665.

[6] North Bridge, "2012 Future of Cloud Computing Survey Exposes Hottest Trends in Cloud Adoption "

in 2012 Future of Cloud Computing Survey, SAN FRANCISCO, USA, 2013.

[7] HP, "Four steps to better application management and deployment," in Business white paper, 2012.

[8] M. A. Chauhan and M. A. Babar, "Towards Process Support for Migrating Applications to Cloud

Computing," in Cloud and Service Computing (CSC), 2012 International Conference on, 2012, pp. 80-

87.

[9] Amazon. Amazon web service (AWS) [Online]. Available: http://aws.amazon.com/, 2012.

[10] Synchromedia. GreenStar Network | Building a Zero Carbon Network [Online]. Available:

http://www.greenstarnetwork.com/, 2010.

[11] J. Miranda, J. M. Murillo, J. Guillén, and C. Canal, "Identifying adaptation needs to avoid the vendor

lock-in effect in the deployment of cloud SBAs," in Proceedings of the 2nd International Workshop on

Adaptive Services for the Future Internet and 6th International Workshop on Web APIs and Service

Mashups, 2012, pp. 12-19.

[12] V. Tran, J. Keung, A. Liu, and A. Fekete, "Application migration to cloud: a taxonomy of critical

factors," in Proceedings of the 2nd International Workshop on Software Engineering for Cloud

Computing, 2011, pp. 22-28.

[13] B. Di Martino, D. Petcu, R. Cossu, P. Goncalves, T. Máhr, and M. Loichate, "Building a mosaic of

clouds," in Euro-Par 2010 Parallel Processing Workshops, 2011, pp. 571-578.

[14] K. Chine, "Learning math and statistics on the cloud, towards an EC2-based Google Docs-like portal

for teaching/learning collaboratively with R and Scilab," in Advanced Learning Technologies (ICALT),

2010 IEEE 10th International Conference on, 2010, pp. 752-753.

[15] I. Ross and G. Robert. The R Project for Statistical Computing [Online]. Available: http://www.r-

project.org/, 2013.

[16] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah, Modeling and Simulation in SCILAB: Springer,

2006.

[17] W. Tian, S. Su, and G. Lu, "A framework for implementing and managing platform as a service in a

virtual cloud computing lab," in Education Technology and Computer Science (ETCS), 2010 Second

International Workshop on, 2010, pp. 273-276.

[18] N. K. Salih and T. Zang, "Survey and comparison for Open and closed sources in cloud computing,"

arXiv preprint arXiv:1207.5480, 2012.

[19] OCCI. Open Cloud Computing Interface [Online]. Available: http://occi-wg.org/, 2012.

[20] Favoritemedium.com, "KVM host with gateway guest using port-forwarding," 2011.

[21] K. Mike, "Adopt emerging specifications for cloud resource control," in Red Hat, 2012.

[22] J. Guillén, J. Miranda, J. M. Murillo, and C. Canal, "A service-oriented framework for developing cross

cloud migratable software," Journal of Systems and Software, 2013.

[23] S. Dowell, A. Barreto, J. B. Michael, and M. T. Shing, "Cloud to cloud interoperability," in System of

Systems Engineering (SoSE), 2011 6th International Conference on, 2011, pp. 258-263.

[24] D. Petcu, "Portability and interoperability between clouds: challenges and case study," Towards a

Service-Based Internet, pp. 62-74, 2011.

[25] Small Tree. Shared Storage [Online]. Available: https://www.small-

tree.com/shared_storage_a/212.htm, 2013.

[26] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file system," in ACM SIGOPS Operating

Systems Review, 2003, pp. 29-43.

[27] D. Borthakur, "HDFS architecture guide," Hadoop Apache Project. http://hadoop. apache.

org/common/docs/current/hdfs_design. pdf, 2008.

[28] F. B. Schmuck and R. L. Haskin, "GPFS: A Shared-Disk File System for Large Computing Clusters,"

in FAST, 2002, p. 19.

[29] T. Haynes and D. Noveck, "Network File System (NFS) version 4 Protocol," Network, 2013.

[30] V. I. Miloushev and P. A. Nickolov, "Aggregated opportunistic lock and aggregated implicit lock

management for locking aggregated files in a switched file system," ed: Google Patents, 2011.

[31] T. Zhao, V. March, S. Dong, and S. See, "Evaluation of a performance model of Lustre file system," in

ChinaGrid Conference (ChinaGrid), 2010 Fifth Annual, 2010, pp. 191-196.

[32] Ericsson. Ericsson - A world of communication [Online]. Available: http://www.ericsson.com/, 2013.

[33] M. Cheriet. ICRA [Online]. Available: http://tokra.synchromedia.ca/icra/, 2012.

[34] OpenSAF team. Getting Started with OpenSAF [Online]. Available:

http://devel.opensaf.org/wiki/GettingStartedWithOpenSAF, 2013.

IJ-CLOSER ISSN: 2089-3337 

OPENICRA: Towards A Generic Model for Automatic Deployment and Hosting (Gadhgadhi Ridha)

275

[35] Business Wire. OpenSAF Reports Large Gains in Market Traction [Online]. Available:

http://python.sys-con.com/node/1753543, 2011.

[36] Ericsson, CGI, FUJITSU, IBM, MIRANDA, TELEDYNE, and DALSA. A major GreenICT Initiative

[Online]. Available: http://www.equationict.com/, 2011.

[37] Synchromedia. Manual deployment duration of OpenSAF [Online]. Available:

http://www.surveymonkey.com/s/Y5Q9DSL, 2013.

[38] L. Sun, I.-H. Mkwawa, E. Jammeh, and E. Ifeachor, "Case Study 1—Building Up a VoIP System

Based on Asterisk," in Guide to Voice and Video over IP, ed: Springer, 2013, pp. 193-213.

[39] IPKall. Free Washington state phone number to your Internet phone [Online]. Available:

http://www.ipkall.com/, 2013.

[40] Amazon. Amazon CloudWatch [Online]. Available: http://aws.amazon.com/cloudwatch/, 2013.

[41] CopperEgg. Real-time insight into server performance and services deployed in public and private

clouds. [Online]. Available: http://www.copperegg.com/revealcloud-server-monitoring/, 2013.

[42] D. Fred. Stress Testing the BigBlueButton Server with Many Clients [Online]. Available:

https://github.com/bigbluebutton/bigbluebutton/blob/master/labs/stress-testing/bbb-test, 2013.

[43] F. F. Moghaddam, M. Cheriet, and K. K. Nguyen, "Low carbon virtual private clouds," in Cloud

Computing (CLOUD), 2011 IEEE International Conference on, 2011, pp. 259-266.

