
 
 

 

Institute of Advanced Engineering and Science 

w  w  w  .  i  a  e  s  j  o  u  r  n  a  l  .  c  o  m 

 
International Journal of Cloud Computing and Services Science (IJ-CLOSER) 

Vol.2, No.1, February2013, pp. 65~72 

ISSN: 2089-3337  65 

  

Journal homepage: http://iaesjournal.com/online/index.php/ IJ-CLOSER 

Object-Relational Mapping Framework to Enable Multi-

Tenancy Attributes in SaaS Applications 
 

 

Arsalan Shahid*, Muhammad Naeem Ahmed Khan* 
* Department of Computing, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), 

Islamabad, Pakistan. 

 

 

Article Info  ABSTRACT 

Article history: 

ReceivedOct 20
th

, 2012 

Accepted Oct 31
th

, 2012 

 

 During the last decade, there has been a major paradigm shift in the way the 

software services are being provided to the enterprise and corporate sector. 

Instead of using on-premises LOB (Line of Business) applications, 

corporations and enterprises are switching to off-premises host applications 

that are now being offered as a service by several software companies. This 

new concept of providing software service is generally known as SaaS (i.e., 

Software as a Service). However, the adaptation of such a model necessitates 

that the applications which are required to be provided as a service should be 

generalized for users or groups of users. The users or user groups ordinarily 

correspond to a company or group of companies/businesses and are termed 

as tenants. In this regard, the architecture of SaaS applications needs to be 

customized to support certain characteristics — e.g., configurability, 

maintainability and scalability — to support diverse number of users. This 

paper, firstly, analyzes new trends in the present day business environment 

alongside the hardware and software industry that led to the development of 

SaaS model; and then looks into the characteristics and features that a multi-

tenant system needs to possess in order to put this concept into practice. 

Keyword: 

Cloud Computing  

SaaS 

Service Oriented Architecture 

Single Instance Multi-tenancy 

Data Customization 

 

Copyright ©2013Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Muhammad Naeem Ahmed Khan 

Department of Computer Science, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology 

(SZABIST),Islamabad, Pakistan. 

Email: dr.naeem@szabist-isb.edu.pk 

 

 

1. INTRODUCTION 

TheSaaS has altered the way people build, sell, buy and use software as it is provided as a hosted 

service by the sellers and is bought by the clients on subscription basis. This is a major paradigm shift in the 

software industry because the companies do not need to buy and maintain their own IT infrastructure as the 

service providers maintain the software service and infrastructure at their ends.The users who utilize SaaS are 

called tenants; and since the same software service can be subscribed by multiple users, therefore, the 

concept of multi-tenancy is at the core of SaaS. Configurability, efficiency and scalability are three other 

main attributes of SaaS in addition to multi-tenancy [1]. Multi-tenancy necessitates novel architectural 

change in order to create software that is capable to support multiple users or tenants simultaneously. Multi-

tenant application should be differentiated from a multi-user application [3] as applications’ customization 

for each user is an integral part of the former technique to avoid sharing of data among the tenants. Likewise, 

it also differs from the multi-instance applications since all the tenants use a single instance of the application 

while a separate application instance for each user is required in the multi-instance application model. Multi-

tenancy, therefore, requires a strict separation of data among the tenants to accommodate diverse set of 

requirements of different tenants over the base functionality of the same application.As a result, security, 

extensibility, configurability and scalability attributes bear paramount importance in SaaS architecture, 

particularly, if a large user base is required to be supported. The two main benefits of multi-tenant 

applications include supporting a single application instance and maximizing the rate of hardware utilization. 



   ISSN:2089-3337 

IJ-CLOSER Vol. 2, No. 1,  February 2013 :  65–72 

66 

Traditionally, the users purchase a license of the software product to install its copy on their system 

and are bound to adhere to the terms and conditions spelled out in the SLA or license agreement. The recent 

advancement in hardware, software, virtualization and Internet technologies have led to the foundation and 

formation of an environment through which software services can be provided to the clients at a much lower 

cost of ownership on subscription basis. 

As end users are much privy to their corporate information and business secrets, therefore, there is a 

prevalent general reluctance in the adoption of SaaS — as the companies hesitate to store their corporate and 

business related information with a third party. This situation demands for developing such policies for SaaS 

platform that not only ensure safety and security of the clients’ data but also guarantee its privacy to restore 

confidence/trust of clients. For this purpose, applications need to be designed in such a way that data of one 

tenant is not at all visible to any other tenant.  

 

1.1. Types of Multi-Tenancy 
There are three main types of multi-tenancy which primarily depend on the way how data is isolated 

for individual tenants; it is more of a continuum between totally isolated and shared data [2, 9] where data 

architecture is essentially dependent on the technical and business considerations. Figure 1 (source: [2]) 

illustrates the conceptual separation of the isolated and shared data architectures. In a broader spectrum, the 

three types of multi-tenancy based on data architectures are: (i) separate databases for each tenant, (ii) same 

database but separate schema for each tenant, and (iii) same database, schema and tables for all the tenants 

with separate tenant ID (pure multi-tenancy). 

 

 

 
 

Figure 1: The spectrum of data isolation [2]. 

 

a. Separate database approach: In this approach, code and the user interface are the same but each 

tenant has its own database with distinctive structure. This the simplest form of multi-tenancy and 

can be used to shape an application into a multi-tenant application, however, it bears a higher 

operational cost. 

b. Shared Database, Separate Schemas: In this approach, all the tenants share the same database 

but have different schemas. The schema creation, with its accompanying set of tables, needs to be 

dynamic and is created when a tenant subscribes to the service. This approach is relative easy to 

implement and data model extension is straightforward,  but the backup and restore procedures 

become complicated since data of all the tenants needs to be backed-up and restored in case of 

system failure. 

c. Shared Database, Shared Schema (Pure Multi-tenancy): This approach, also called pure multi-

tenancy, entails using the same schema to support multiple tenants [2, 10, 11] and data of each 

tenant is tagged with a particular tenant ID. This approach endures the least hardware cost as it uses 

the least amount of resources, but on the other hand, it bears higher level of complexity and higher 

cost of development. The rest of the paper only discusses this approach as other approaches are 

beyond the scope of this study. 

 
1.2. Key characteristics of Multi-Tenancy 

Multi-tenancy provides a much better hardware sharing than virtualization. The main characteristics 

of multi-tenancy include hardware resource sharing and high degree of configurability. The hardware 

resource sharing characteristicfacilitates a lower TCO (Total Cost of Ownership) as the multi-tenant 

applications allow for placing multiple tenants on the same server, thus letting tenants to share the hardware 

and software resources.  

The more appropriate approach to facilitate configurability is to allow mechanisms built into the 

application to achieve customization for separation of data of multiple tenants — for instance, user interface 

customizations, workflow creation and custom field creation. 

 



IJ-CLOSER ISSN: 2089-3337  

 

Object-Relational Mapping Framework to Enable Multi-Tenancy Attributes in SaaS Apps (Arsalan Shahid) 

67 

a. Enabling Multi-Tenancy at Data Layer: The main challenge in multi-tenancy is to add tenant 

information into the data in a way that every piece of information can be precisely traced back to an 

individual tenant. Once this has been achieved, there are certain patterns and practices related to security, 

resource isolation, extensibility and scalability that need to be followed to enable the key characteristics of 

multi-tenant enabled applications [2, 5]. Security patterns in multi-tenancy fundamentally pertain to filtering, 

permission and access control and encryption [2, 11]. Filtering ensures that the data specific to a particular 

tenant is visible only to that tenant and it is accomplished by adding a layer between the actual data and the 

data source. User permissions and privileges are managed through maintaining Access Control List (ACL) 

that characterizes users’ accesses to data. In multi-tenancy context, this is achieved using two 

fundamentaltechniques — impersonation and trusted subsystem — in which the former technique require 

that only the actual tenant’s credentials are used to access data and the latter technique only uses the tenant’s 

credentials for authentication purposes and necessitates a separate account to access the system. Additionally, 

encryption is applied to the sensitive data to further enhance data security measures. 

b. Extensibility Patterns: The ability to store per tenant information by extending the schema is a 

valuable attribute for any multi-tenant application. For this purpose, the following three patterns are mostly 

used. 

i) Pre-Allocated Fields: This implies introducing fixed number of columns in a table to store 

information of tenants [2, 13]. Usually, string data is stored in these fields and necessary metadata 

tables are created accordingly that contain pertinent information about processing these fields. There 

could be single metadata table that encompasses details of all the custom fields or there could be a 

separate metadata table for each custom field [2, 10]. 

ii) Name Value Pairs: This approach requires two additional tables along with the primary data 

table. First table contains information of the name value pair field and the second holds definition of 

the custom field. Whenever a new field is created, its metadata is written into the metadata table. 

When the tenant stores data into the relevant fields, then firstly the primary data is stored into the 

tables and an ID is generated for the corresponding primary item. This approach introduces an 

arbitrary number of extra fields into the data model without changing the shared schema and retains 

the cost effectiveness of the shared database, but along the side, it adds a layer of complexity to the 

data retrieval process. 

iii) XML Based Extension Model: XML support, when integrated with the relational database, 

adjoins data extension capabilities at the client side without changing the schema of the tables [7, 

12]. Some database management systems, such as Oracle, allow defining explicit XML fields and 

embedding XPath queries in the SQL’s ―select‖ statement. The key advantage of this approach is 

that it does not require changing the database schema while adding new fields/columns into the 

tables. 

 

c. Scalability Patterns: The scalability patterns facilitate expanding the number of tenants, users and 

data volumes in the multi-tenant application. Scaling can pertain either to moving databases to a more 

powerful server (scale up) or increasing the total number of servers and sharing the load between these 

servers using load balancing techniques (scale out). For scale out mode, either replication or partitioning 

techniques could be used. Replication, as the name suggests, sets up mirror image of the same database 

server onto another server; whereas, partitioning means dividing data of a single table and coping it into 

separate tables in the same or different database. The tenant based horizontal partitioning (i.e., dividing 

tables by rows) could be useful in these situations where many users try to access the data or larger data size 

is causing delays in fetching query results, or operational maintenance tasks start affecting the availability of 

data. The simplest approach to horizontally partition the database is to apply the tenant ID. 

 

2. LITERATURE REVIEW 

To enable multi-tenancy in SOA, a considerable amount of research has been carried out and 

reported in the literature. Most of these approaches have focused on defining architecture at the data storage 

level. Jacobs and Aulbach [9] studied the currently available relational databases and concluded that there 

was no intrinsic support available for multi-tenancy.  Grund et al. [10] suggest that the RDBMS (initially 

devised by Codd [16]) and its ISO implementation do not provide the semantics to support multi-tenancy 

natively. The proposed solution to this could be to introduce a tenant context in a multi-tenant system and 

employ partitioning strategies based on this context. 



   ISSN:2089-3337 

IJ-CLOSER Vol. 2, No. 1,  February 2013 :  65–72 

68 

 

Jacbos and Aulbach [9] discuss mapping of the tenant context or tenant identifier into the existing 

patterns of database semantics to provide data isolation on per tenant basis. This essentially necessitates 

introducing an administrative framework into the database schema that should maintain customer related 

metadata. Additionally, the framework should allow for the user management, access control, disk quota 

management that duly supports the execution of bulk administrative operations. 

Chong and Wolter [1, 2] discussed various patterns that can be used at the database level to 

implement multi-tenancy. The drawback of this approach is the requirement to write code for all the tables 

that the tenants use to share information. 

Bezmer [3, 4] discussed the various types of multi-tenancy and the role that multi-tenancy could 

play in providing affordable solutions to the small to medium level client sides. The identified multi-tenancy 

challenges include: performance, scalability, security, zero down-time and maintenance. Data isolation is also 

identified as the basic requirements for multi-tenancy and researchers proposed using a layer between the 

business logic and the database layer that should be responsible for creation of new tenants, query adaptation 

and load balancing. However, such architecture bears a down side that it requires manual creation of layer 

that allows a single tenant application to be converted to a multi-tenant application. 

Guo [6] proposed a framework to support multi-tenancy and advocated introducing a ―multi-tenancy 

enablement‖ layer between the business logic and the data layer to make it transparent for the developers to 

write multi-tenant applications. Data management and information isolation are identified as one of the key 

characteristics of the framework. For data isolation, SQL ‘where’ command can be applied to filter the data 

on a per client basis.  

While discussing multi-tenancy reengineering patterns, Bezmer [17] identifies database as one of 

the three areas which need to reengineer in order to enable multi-tenancy in any application. According to 

Bezmer [17], commercial off-the-shelf databases are not intrinsically equipped to handle multi-tenancy. 

Therefore, this logic must be introduced in a multi-tenant application by introducing an additional layer 

between the business and the data layers. The main task of this layer, in terms of data isolation, should be 

query adaptation. This layer should make sure that all queries are articulated in a mannerthat each tenant 

should only be able to access its own data. 

Du et al. [7] discussed harnessing the native XML support in the current RDBMS systems in 

scheme extension on a per tenant basis as well as the implementation of read and write functionality using 

these patterns. It is concluded that the XML based model are more efficient than the custom fields and pre-

allocated fields patterns. Nonetheless, such an approach requires that code on a per table basis be written to 

make this functionality work. 

 

3. PROBLEM STATEMENT 

While considering the challenges of developing multi-tenant applications, the first requirement that 

is central to the architecture is data isolation on a per tenant basis. In this regard, a number of valid and 

efficient patterns have been defined in the literature that facilitate proper data isolation. These patterns rely 

on filtering data on a per tenant basis. The problem with these approaches is that they introduce considerable 

complexity in both the business and the data layers. These approaches require that the developer should write 

code bearing considerable complexity to make sure that data isolation is maintained.  

Real world business entities are represented as objects of classes in the present day object oriented 

systems. In fact, this is how domain models get converted to physical design. The next step is the information 

persistence. In this step, the information in the business objects is stored into the database. What is required is 

that the information should be serialized to the database. Traditionally, the process followed in the 

development of writing a complete data access layer is to store the information into the database by executing 

SQL queries or stored-procedures on the RDBMS. For this purpose, a separate query needs to be written for 

each of the CRUD (Create, Read, Update and Delete) operation.In short, one can summarize the problem into 

the following points: 

i. There is a need to restructure the complete Data Access Layer to endure data to the databases. 

ii. Data filtration is required to support multi-tenancy, which adds considerable complexity to the 

queries resulting in additional work for the developers. 

iii. This layer needs to be written for each and every database table and view that represent multi-

tenant data. 

 

Keeping into consideration the aforementioned identified problems, we propose an O/R mapping 

framework in the next section that offers a potential solution to these problems. 

 

 



IJ-CLOSER ISSN: 2089-3337  

 

Object-Relational Mapping Framework to Enable Multi-Tenancy Attributes in SaaS Apps (Arsalan Shahid) 

69 

4. PROPOSED SOLUTION 

One of the foremost objectives of this study is targeted towards freeing the developer of the 

complexity of writing multi-tenant aware data layer. To simplify this process, a number of Object-Relational 

Mapping (O/R Mapping) frameworks have been proposed in the literature. These frameworks simplify the 

process of data layer development by providing alternate, simpler mechanisms to specify information that 

needs to be persevered into the database management systems. These frameworks do rely on the creation of 

queries to fetch and update data in the database systems and all such operations are performed internally. 

These frameworks do not require the developer to write such queries; however, they do require that some 

rules should be followed while specifying the information that needs to be preserved. Some of these 

frameworks like Hibernate (Java) and NHibernate (.Net) provide the extension mechanism that allows the 

query generation pipeline to be extended so that custom processing could be done on the queries before they 

are a executed on the database. Our proposed O/R mapping framework is shown in Figure 2. 

The proposed framework could be extended to make it multi-tenant aware.The following 

modifications would be required in the existing framework to make it multi-tenant aware. 

i. Internal creation and management of tables to store the tenant information.  

ii. Creation of a tenant context object that contains information about the tenant to whom the 

current user belongs to. 

iii. Extension of the frameworks execution pathway to modify the queries that are tenant specific. 

 

The key components and features of the proposed framework are described in the subsequent 

paragraphs. 

 

4.1. Creation and management of tenant specific tables 

In the first place, the framework will initialize the database tables which are required to store tenant 

specific information including groups and users. The framework will also initialize these tables with a special 

type of group known as super user group and any user belonging to this group will be used to create and 

manage other tenants, groups and users. However, super user group will itself be treated as read-only by the 

framework so that there is always one user available to manage other users of the framework. 

 

4.2. Tenant Context 

The framework provides a special programmatic structure that contains the current tenant ID and 

information. It also contains methods that allow users and group management. The current tenant information 

is determined by the currently logged-in user and will be used to fetch tenant information from the database. 

This object contains a single static factory method that can be invoked to create a new tenant context object 

so that the information is fetched only on demand. 

 

4.3. Extension to Query Execution Pathway 

The framework uses the extension mechanism defined in the underlying framework. It intercepts the 

currently executing query and adds the tenant specific filter to every executing query so that only data 

integrity is maintained. This extension could be due to a direct change in the code of an existing framework 

or it could use an existing extension mechanism provided by the framework. 

Figure 2 demonstrates a typical multi-tier application utilizing an O/R framework. The application 

layer consists of the application business logic. For an object oriented application, this consists of classes 

representing the business objects in the transient state. The transient objects are sent to the O/R mapping 

framework, which does the job of storing and retrieving them from the database.  

The query generation engine is at the heart of any such O/R framework. This engine is responsible 

for determining the schema of the tables that store a certain object. Some frameworks, like Hibernate, 

provide an extension mechanism through events that allow the modification of the query which is executed 

on the tables. For the frameworks that do not support extension mechanisms, the actual source code will need 

to be modified to make the O/R mapping engine tenant-aware. 

The data retrieval process is at the heart of our proposed framework. Figure 3 illustrates the data 

retrieval process employed in our proposed model. All data retrieval requests are routed to the O/R mapping 

engine which generates the data retrieval query. This query is then routed to the extension mechanism which 

requests the ―Tenant Context‖ object for the relevant Tenant ID that is determined using the current logged in 

user-id. The returned tenant ID is used to modify the query to add a SQL ―where‖ clause so that data is 

filtered according to the current tenant. This mechanism allows seamless data isolation and requires no 

additional effort on the part of the developer. 

 

 



   ISSN:2089-3337 

IJ-CLOSER Vol. 2, No. 1,  February 2013 :  65–72 

70 

 

Database

Data Access Libraries

O/R mapping framework Session

Application

Persistent 
Objects

Transient 
Objects

Query Generation 
Engine

 
 

Figure 2: The O/R mapping framework stack. 

 

 

5. RESULTS AND DISCUSSION 

We have used comparison of our proposed model with the existing multi-tenancy techniques for 

validation purposes. A comparative analysis of our model and the existing models is shown in Table I. 

The proposed system simplifies pure multi-tenant application development by introducing intrinsic 

support for multi-tenancy. The benefit of using this framework is two folds. It allows the use of an existing 

O/R mapping framework thus making the development of the data layer redundant. Moreover, it has intrinsic 

mechanism to enforce data isolation thus eliminating the need to write any specific code that is needed to 

make sure that the data is properly isolated on a per tenant basis. 

This framework would act like a replacement to the data layer for any existing application and will 

be the first step towards making any existing application multi-tenant. For those applications that are already 

using the unmodified version of this O/R mapping framework, our framework could act like a drop-in 

replacement in making the application multi-tenant aware. 

A number of frameworks have been proposed to enable multi-tenancy; though some of them do exhibit 

real premise, but none of them attempts to use an O/R mapping framework to achieve the goal of multi-

tenancy. All of these frameworks require that their stipulations be applied and recreated on a per application 

basis to make them multi-tenant. Our framework is an endeavor to propose a write once use anywhere logic 

that can be used and enhanced in future multi-tenant aware applications. 

 

6. CONCLUSIONAND FUTURE WORK 

This paper is an endeavor to introduce multi-tenancy to an existing O/R mapping framework.  This 

research can have different offshoots as there are a lot of areas that can be explored. This framework applies 

tenant specific filtration to the data and can be extended to provide configurability on per tenant basis. The 

framework could be adapted to use any of the techniques discussed earlier like pre-allocated fields, name-

value pairs and XML-based extensions to allow configurability to the solutions. 

One of the possible areas of further research could be implementation of one of the storage 

techniques and patterns which have been identified in the previous work. The framework could be directed to 

use one of the storage techniques like Pre-allocated fields, key value pairs or the XML fields to store tenant 



IJ-CLOSER ISSN: 2089-3337  

 

Object-Relational Mapping Framework to Enable Multi-Tenancy Attributes in SaaS Apps (Arsalan Shahid) 

71 

specific information. Implementation of any such technique will require considerable changes in any O/R 

mapping framework since this would require the data serialization mechanism to be rewritten. 

Another future direction could be integrating the storage mechanism to the user interface of a multi-

tenant application to provide configurability with the application. 

 

Persistent 
Object Request

TenantID

1

2

Tenant Name

Tenant 1

Tenant 2

Tenants

ItemID

1

2

Item Details

Tenant 1

Tenant 2

Items

TenantID

1

1

Database

O/R Mapping Engine

Tenant 
Context

O/R Mapping 
Engine Extension

Query

Generate Query

G
et Ten

an
t 

In
fo

rm
atio

n

TenantID
Query with 

tenantId

Data filtered
by Tenant

 
 

Figure 3: The Data Retrieval Pipeline. 

 

Table I. Comparative Summary. 

Existing Systems Snags Our Proposed System Expected Results 

Multi-User System No facility to support multiple 

tenants using pure multi-
tenancy. 

A system with pure multi-

tenancy support. 

A system that supports 

multiple tenants. 

Multi-Instance Multi-Tenant 

Applications 

Poor usage and sharing of 

hardware resources. 

Promotes use of pure multi-

tenancy. 

Better usage and sharing of 

hardware resources. 



   ISSN:2089-3337 

IJ-CLOSER Vol. 2, No. 1,  February 2013 :  65–72 

72 

Pure multi-tenant systems 

utilizing O/R mapping 

framework. 

Extra instrumentation required 

at the object level to tag them 

with the tenant ID. 

Auto tagging and filtering of 

tenant data with no additional 

development effort. 

No need for additional 

instrumentation to make the 

system multi-tenant. 

Pure Multi-Tenant systems Need to write data layer and 

complex queries to enable data 

isolation. 

Pure multi-tenant system with 

modified O/R mapping data 

management layer. 

No need to write data layer.  

Seamless data isolation. 

 

 

 

 

REFERENCES 
[1] F. Chong, Architecture Strategies for Catching the Long Tail., MSDN, 2006. 

[2] F. Chong and Roger Wolter., Multi-Tenant Data Architecture., MSDN, 2006. 

[3] C.P.Bezemer and A. Zaidman. Multi-tenant SaaS applications: maintenance dream or nightmare? In: Proceedings 

of the 4th International Joint ERCIM/IWPSE Symposium on Software Evolution (IWPSE-EVOL), ACM, 2010. 

[4] C.P. Bezemer and A. Zaidman. Challenges of Reengineering into Multi-Tenant SaaS Applications? The Software 

Engineering Research Group Technical Reports 2010. 

[5] Z. H. Wang, Chang JieGuo, Bo Gao, Wei Sun, Zhen Zhang, Wen Hao An, A Study and Performance Evaluation of 

the Multi-Tenant Data Tier Design Patterns for Service Oriented Computing, In IEEE International Conference on 

e-Business Engineering, 2008. 

[6] Chang JieGuo, Wei Sun, Ying Huang, Zhi Hu Wang, Bo Gao., A Framework for Native Multi-Tenancy 

Application Development and Management‖, In the 9th IEEE International Conference on E-Commerce, 2007. 

[7] Jia DU, Hao-yu WEN, Zhao-jun YANG. Research on Data Layer Structure of Multi-tenant E-commerce System. 

IEEE, 2010. 

[8] Mei Hui, Dawei Jiang, Guoliang Li, Yuan Zhou. Supporting Database Applications as a Service, In IEEE 

International Conference on Data Engineering, 2009. 

[9] Dean Jacobs, Stefan Aulbach, Ruminations on Multi-Tenant Databases, In Business Technologie und Web (BTW 

2007). 

[10] Martin Grund, MatthieuSchapranow, Jens Krueger, Jan Schaffner, Anja Bog, Shared Table Access Pattern Analysis 

for Multi-Tenant Applications, In IEEE Symposium on Advanced Management of Information for Globalized 

Enterprises, 2008. AMIGE, 2008. 

[11] Weiping Li, Zhichao Zhang, Si Wu, Zhonghai Wu, An implementation of the SaaS Level-3 maturity model for An 

Educational Credit Bank Information System, In International Conference on Service Sciences 2010. 

[12] Nitu. Configurability in SaaS (Software as a Service) Applications, In ISEC '09 Proceedings of the 2nd India 

software engineering conference, 2009. 

[13] The Force.com Multitenant Architecture. 

[14] F. S. Foping, I. M. Dokas, J. Feehan, S. Imran, A New Hybrid Schema-Sharing Technique for Multitenant 

Applications, In IEEE International Conference on Digital Information Management, 2009. 

[15] E. F. Codd. Relational database: A practical foundation for productivity. Commun. ACM, 25(2):109–117, 1982. 

[16] C. P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans and A. Hart: Enabling Multi-Tenancy: An Industrial 

Experience Report, The Software Engineering Research Group Technical Reports, 2010. 

 

 

BIOGRAPHY OF AUTHORS 

 

 
 

Arsalan Shahid completed his MS in Computing from Shaheed Zulfikar Ali Bhutto Institute of 

Science and Technology (SZABIST), Islamabad, Pakistan. His research interests include Cloud 

Computing and Software Architecture. 

 

Muhammad Naeem Ahmed Khan obtained D.Phil. degree in Computer System Engineering 

from the University of Suusex, Brighton, England, UK. Presently, he is affiliated with Shaheed 

Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Islamabad, Pakistan. His 

research interests are in the fields of software engineering, cloud computing, cyber 

administration, digital forensic analysis and machine learning techniques. 

  

 


