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 In this paper, we first modify the Smart-Vercauteren’s fully homomorphic 

encryption scheme [1] by applying self-loop bootstrappable technique. The 

security of the modified scheme only depends on the hardness of the 

polynomial coset problem, removing the assumption of the sparse subset sum 

problem in the original paper in [1]. Moreover, we construct a non-self-loop 

in FHE by using cycle keys. Then, we further improve our scheme to make it 

be practical. The securities of our improving FHE’s are respectively based on 

the hardness of factoring integer problem, solving Diophantine equation 

problem, and finding approximate greatest common divisor problem. 
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1. INTRODUCTION 

In this work, we first present a fully homomorphic encryption scheme (FHE) by modifying the FHE 

in [1], which merely uses the elementary theory of algebraic number fields. Then, we improve this scheme to 

make it be practical by hiding the ideal lattice in the public key. The public key in their scheme consists of a 

prime p  and an integer   modulo p . The private key is an integer 0s . To encrypt a bit m , one selects a 

small random polynomial ( )r x , and output a ciphertext  ( 2 ( )) modc m r p  . To decrypt a ciphertext c , 

one computes the message bit as follows: 
0( / 0.5 )mod2m c c s p      . To implement FHE, they 

introduce the hardness assumption of the sparse subset sum problem. Moreover, to obtain the FHE in [1], 

they must set lattices of dimension at least 
272n  , which is beyond practical usability [2]. 

The aim of this paper is to remove the hardness assumption of SSSP in the Smart-Vercauteren’s 

FHE [1], and improves our scheme to make it be practical. The advantage of their scheme is simple, since the 

public key in their SHE scheme merely implies two integers ( , )p  . However, it is well know that ( , )p   

forms a basis of an ideal lattice, and is equivalent to its corresponding HNF representation. So, when the 

dimension of an ideal lattice is small, one can find the secret key by using lattice reduction algorithm. This is 

the reason why the dimension of an ideal lattice n  cannot be taken too small in their FHE. 

 

1.1 Our Contribution 

The difference between our scheme and their work is mainly located on fully homomorphic 

encryption scheme. We use the approach of re-randomizing the secret key to squash decryption polynomial, 

whereas they introduce the hardness assumption of SSSP to squash decryption polynomial. The security of 
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our scheme is only based on the hardness of the polynomial coset problem. What is more, we further 

construct several variant FHEs to make our scheme be practical. The securities of our variant schemes 

respectively depend on the hardness assumption of factoring integer problem, solving Diophantine equation 

problem, and approximate GCD problem. The start point of our work is to provide the public key of other 

forms to hide the public key ( , )p  . 

 

1.2 Related work 

Rivest, Adleman, and Dertouzos [3] first investigated a privacy homomorphism, which now is 

called the fully homomorphic encryption (FHE). Many researchers [4-7] have worked at this open problem. 

Until 2009, Gentry [8] constructed the first fully homomorphic encryption using ideal lattice. In Gentry’s 

scheme, the public key is approximately 
7n  bits, the computation per gate costs 6( )O n  operations. Smart and 

Vercauteren [1] presented a fully homomorphic encryption scheme with both relatively small key 3( )O n  bits 

, ciphertext size 1.5( )O n  bits and computation per gate at least 3( )O n  operations, which is in some sense a 

specialization and optimization of Gentry’s scheme. Dijk, Gentry, Halevi, and Vaikuntanathan [9] proposed a 

simple fully homomorphic encryption scheme over the integers, whose security depends on the hardness of 

finding an approximate integer GCD. Stehle and Steinfeld [10] improved Gentry's fully homomorphic 

scheme and obtained to a faster fully homomorphic scheme, with  3.5( )O n  bits complexity per elementary 

binary addition/multiplication gate, but the hardness assumption of the security of the scheme in [10] is 

stronger than that in [8]. 

 

1.3 Organization 

Section 2 recalls notations and related defintions, and gives Smart-Vercauteren’s somewhat 

homomorphic encryption. Section 3 first transforms the somewhat homomorphic encryption into a FHE by 

applying self-loop bootstrappable technique, then constructs a non-self-loop FHE by using the method of 

cycle keys. Section 4 further improves our FHE to make it be practical. Section 5 gives a concrete 

implementation of our scheme. Section 6 concludes this paper. 

 

2. Preliminaries 

2.1 Notations 

Let n  be a security parameter, [ ] {0,1,..., }n n . Let R  be the ring of integer polynomials modulo 

( )f x , i.e., [ ] / ( )R Z x f x , where ( )f x  is an integer monic and irreducible polynomial of degree n . For 

f R , we denote by f


 the infinity norm of its coefficient vector, sometimes denoted f ,  
2

f  the 

polynomial of its coefficient modulo 2. For R , its expansion factor mul  is n , that is, u v n u v
  

    , 

where   is multiplication in R . 

 

2.2 Ideal Lattices 

In this paper, we take ( ) 1nf x x   with n  a power of 2 . Let I  be a principal ideal of R , namely, 

it only has a single generator. For the coefficient vector 
0 1 1( , ,..., )T

nu u u u   of u R , we define the cyclic 

rotation 
1 0 2( ) ( , ,..., )T

n nrot u u u u   , and the corresponding circulant matrix 

1( ) ( , ( ),..., ( ))n TRot u u rot u rot u . ( )Rot u  is called the rotation basis of the ideal lattice ( )u . For ,f u R  , 

[ ]uf  is the coefficient vector of f  modulo the rotation basis of u , namely, mod ( )f Rot u . So, we consider 

each element of R  as being both a polynomial and a vector. 

 

2.3 Smart-Vercauteren’s Somewhat Homomorphic Encryption (SHE) 

Smart and Vercauteren’s in the SHE of [1] first select a principal ideal ( )u x  with ( ) 1mod 2u x   

over the ring R  such that the determinant of the circulant matrix of ( )u x  is a prime. It is easy to verify that 

this ideal can be represented by either two integers ( , )p  , where det( ( ))p Rot u  and   is a common root 

of ( )u x  and ( )f x  modulo p . Then, they evaluate a polynomial ( )s x  such that ( ) ( ) mod ( )u x s x p f x  . 

They finally output the public key ( , )p  , the secret key 0 ( ) mods s x x . To encrypt a message bit 
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{0,1}m , the scheme chooses a random small polynomial ( )r x , computes its value at  , and outputs a 

ciphertext ( ) (2 ( ) ) mod
def

c Enc m r m p   . Given a ciphertext c  and the secret key 0s , the decryption 

algorithm deciphers the message bit 0( ) ( / 0.5 )mod 2
def

m Dec c c c s p      . Given two ciphertexts 1 2,c c , 

addition operation 1 2 1 2( , ) ( ) mod
def

Add c c c c p  , and multiplication operation 1 2 1 2( , ) ( ) mod
def

Mul c c c c p . 

 

3. Fully Homomorphic Encryption (FHE) 

In this section, we firstly construct a self-loop FHE based on the Smart-Vercauteren’s SHE, and 

simply analyze the security of our scheme. Then, we present a non-self-loop FHE by using the approach of 

cycle keys. 

 

3.1 Construction of Self-loop FHE 

Since our SHE is same as that of [1], we only need to give a new Recrypt algorithm, which freshens 

a ‘dirty’ ciphertext c  into a new ciphertext newc  with the ‘smaller’ error term and the same plaintext of c . To 

do this, we generate the ciphertexts of the secret key and add them to the public key.  

KeyGen Algorithm: 

(1) Assume ( ) 1nf x x   with n  a power of 2. Choose a random polynomial ( )u x  with 

( ) 1mod 2u x   and ( ) 2u x 


  such that det( ( ( ))) 2np Rot u x    is a prime. Evaluate a 

common root   of ( )u x  and ( )f x  modulo p , and 
1

0
( ) [ ]

n i

ii
s x s x Z x




   such that 

( ) ( ) mod ( )u x s x p f x  . 

(2) Set 0 ( ) mod mod(2 )s s x x p . 

(3) Choose at random an integer 0,1 0
2i

ii
s z




  with 

0,1( ) (log )w w s n   and log(2 )p     , 

where 
0,1( )w s  is hamming weight of 

0,1s , and take 
0,2 0 0,1s s s  .  

(4) Encrypt each bit iz  of 
0,1s : ( ) (2 ( ) ) modi i i iz Enc z r z p    such that ( ) / 2ir x n


  for 

each ( )ir x . Let 0,1 0
2i

ii
s z




 . 

(5) Output the public key 
0,1 0,2( , , , , , )pk n p w s s , and the secret key 0( , )sk p s . 

All Enc, Dec, Add, Mul algorithms are same as those in [1]. 

Remark 3.1: To simplify our description, we take ( ) 1mod 2u x   same as that in [1]. In fact, we 

can select an arbitrary polynomial ( )u x . In this case, we need to modify the above SHE scheme as follows. 

The public key is   1

,1 ,2 02
( , , , , ( ) ,{ , } )n

i i ipk n p w u x s s 

  such that 
,1 ,2i i is s s   and  

2
( )u x  is the polynomial 

of encrypted ( ) mod 2u x , the secret key is ( , ( ) mod 2, ( ))sk p u x s x . The decryption algorithm is changed 

into  
2

* ( ) 0.5 ( )m c c s x h u x      , where 
1

0

n i

i
h x




 .  

Remark 3.2: We may also select an odd composite number det( ( ( )))p Rot u x . To obtain root  , 

we need to factor p , then solve i  for each prime factor by using extending GCD, and compute   by 

applying Chinese Remainder Theorem. So, we can choose many polynomial ( )iu x  with different prime 

det( ( ( )))i ip Rot u x , and set ( ) ( )iu x u x . The advantage of this scheme is easily to generate key. 

Remark 3.3: It is obvious that our scheme can also use larger message space as that of [1]. 

Recrypting algorithm (Recrypt-1(pk, c)): 

(1) Set ( 2 ) /i

iv c p  , [ ]i  , keeping only log( 1) 3k w      bits of precision after the binary 

point for each iv . 

(2) Evaluate i i ig v z   and 0,2 0,2 /g c s p  , and sum 1   encrypted rational numbers with 

1w  non-zero numbers, denoted as 0,2 0
( ) mod 2ii

x g g



  . 

(3) Assume 0 1 2. kx x x x x   . Evaluate 0, 1 0 1( , )x Add x x   and mod 2u c . 

(4) Output a new ciphertext 
0, 1( , )newc Add u x  . 



IJ-CLOSER  ISSN: 2089-3337  

 

More Practical Fully Homomorphic Encryption (Gu Chun-sheng) 

203 

Theorem 3.1. Recrypt algorithm correctly generates a ‘fresh’ ciphertext newc  with the same message 

of c , and supports a product of two ‘fresh’ ciphertexts when 
1 log

8log 2log

n
t

n





 



, where 1t w  . 

Proof: By the Dec algorithm, we know 

0

0,1 0,2

0,1 0,2

0,20

0,20

0

( / 0.5 ) mod 2

mod 2 ( ) / 0.5 mod 2

mod 2 / / 0.5 mod 2

mod 2 ( / ) 2 / 0.5 mod 2

mod 2 ( 2 ) / / 0.5 mod 2

mod 2

i

ii

i

ii

i ii

c c s p

c c s s p

c c p s c s p

c c p z c s p

c c p z c s p

c v z c s













    

      

       

      
 

       
 

    





 0,2 / 0.5 mod 2p 
 

. 

Assume 2 n     . Since there are t  non-zero encrypted rational numbers among   

encrypted rational numbers, we can use symmetric polynomials with degree t  to evaluate the sum of these 

rational numbers. The number of symmetric polynomials is at most t

t




 
 

 
. The number of degree t  

monomials in the polynomial representing our rational addition algorithm is equal to 

...
/ 2 / 4 1

t t t

t t

     
       

           
, which is less than 

tt  (see [2] for details). So, the polynomial ( )r x  

corresponding to a new generating ciphertext is satisfied to 
log 12 1 2 1( )

tt t t t tr x t n t n 
  


  , where n  is the 

infinity norm of the polynomial corresponding to iz . Moreover, to support one multiplication for two ‘fresh’ 

ciphertexts, we require 
2( ( )) ( ) / 1/ 2r x s x p


  according to [1]. Hence, we have 

2 2 2 1( ( )) ( ) / 2tr x tn n  


  , namely, 

1 log

8log 2log

n
t

n





 



.■ 

 

3.2 Security of FHE 

For the semantic secure of our scheme, we follow the security analysis of [1]. The following 

definition is from that in [1]. 

Definition 3.1. (Polynomial Coset Problem (PCP) [1]). Given ( , )r pk , the problem is to guess 

whether 0b   or 1b  , where r  is computed from either ( ) modr u p  for 0b  , where ( )u x  is a 

random polynomial with u  , or uniformly selected from 
U pr F  for 1b  . 

Theorem 3.2. (Theorem 1 [1]). Suppose there is an algorithm A  which breaks the semantic 

security of our SHE with advantage  . Then there is a distinguishing algorithm D , which decides the PCP 

with advantage / 2 . 

 

3.3 Construction of Non-Self-loop FHE 

According to [8], the above FHE can not prove to be semantically secure by a standard hybrid 

argument when using self-loop. In fact, the FHE in [1, 8] also reveals the encrypted secret key bits, although 

it is not direct. The advantage of applying cycle keys is to maximize possible distribution of the ciphertexts 

of encrypted secret key. In the following, we present a non-self-loop FHE by using method of cycle keys. But 

the drawback of our non-self-loop scheme is to require calling Recrypt two times to refresh ciphertext. 

Non-self-loop-KeyGen Algortihm 

(1) Call Step (1) of KeyGen in Section 3.1 two times to generate the public keys 1 1 1( , )pk p  , 

2 2 2( , )pk p   and the secret keys 1

1 1( , )sk p s , 2

2 2( , )sk p s . 

(2) Set 1 1

0 1mod mod(2 )s s x p , and 2 2

0 2mod mod(2 )s s x p . 

(3) Choose at random an integer 0,1 0
2j j i

ii
s z




 , 1,2j   with 

0,1( ) (log )jw w s n   and 

1 2max{ log(2 ) , log(2 ) }p p         , and take 0,2 0 0,1

j j js s s  . 
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(4) Encrypt 1

0,1s  under 2 2 2( , )pk p  as 1 1 1

2 2( ) (2 ( ) )modi i i iz Enc z r z p    with random 1( )ir x , 

and 2

0,1s  under 1 1 1( , )pk p  .  Let 0,1 0
2j j i

ii
s z




 . 

(5) Output the public key 
2

0,1 0,2 1{ , , , , , }j j

j j jpk n p w s s

 , and the secret key 
2

0 1{ , }jj jsk p s  . 

Assume we use 1 1 1( , )pk p   as the public key when encrypting message. To refresh a ciphertext 

c , we first call Recrypt with c  to generate an intermediate ciphertext 1c  under 2pk , then again call Recrypt 

with 1c  to obtain a new ciphertext newc  under 1pk . 

 

4. Improvement of FHE 

In the following, we only discuss how to improve the self-loop FHE scheme in Section 3.1. Indeed, 

it is not difficult to verify that our improvement scheme can be transform into the corresponding non-self-

loop scheme. 

Since the public key in our FHE is 
0,1 0,2( , , , , , )pk n p w s s , one can construct a principal ideal 

lattice with HNF form by ( , )p  . So, the dimension n  of an ideal lattice must be set large enough to 

guarantee the security of FHE. As a result, for practical values of n , the origin scheme [1] can not be made 

FHE. The start point of our work is to hide the parameters ( , )p   to avoid the lattice reduction attack. 

Hence, we can choose a small or even a constant n  to make our scheme be practical. To describe simplicity, 

in this section we denote by   security parameter, n  the dimension of an ideal lattice. 

 

4.1.  FHE Based on Factoring Integer Problem 

To hide integer  , we substitute   by the ciphertexts ( )

0{ (0)}O

i ib Enc 

  of many 0-bits, namely, 

the public key becomes 
( )

0 0,1 0,2( , , ,{ } , , )O

i ipk n p w b s s

 . To attack this scheme, one can factor 1modnx p , 

then guess   among n  roots of 1modnx p . However, we observe that 1modnx p  can be efficiently 

factored only when p  is a prime or has been factored. So, if we take 0q pq  such that det( ( ( )))p Rot s x  is 

a prime, 0q  is another prime, then one cannot factor 1nx   when hidden modulo p . 

KeyGen-1 Algorithm:  

(1) Generate ( , )p   and 0s  as KeyGen in Section 3.1. 

(2) Choose a random prime 0q , and take 0q pq  with 
0p q , where y  is the length of y . 

(3) Encrypt ( )O   0-bits: 2 ( ) modi ib r q  with 
1( ) 2ir x  


 . 

(4) Choose a random fraction 0,1 0
2 i

ii
s z

 


  with 

0,1( ) (log )w s    and logq     , and set 

0,2 0 0,1 2
/s s p s    , keeping only   bits of precision after the binary point, and encrypt each 

bit iz  as (2 ( ) ) modi i iz r z q   with 
1( ) 2ir x  


 . Let 0,1 0

2 i

ii
s z

 


 .  

(5) Output the public key 
0 0,1 0,2( , , ,{ } , , )i ipk n q w b s s

  and the secret key 0( , )sk p s . 

Encryption Algorithm (Enc). Given the public key pk  and a message bit {0,1}m , choose a 

small random subset [ ]T   and a random integer 
12e   , output a ciphertext 

( 2 )modii T
c b e m q


   . 

The Dec, Mul, Add algorithms are identical to that in Section 3.1 except with replacing p  with q . 

The Recrypt algorithm is modified into  0,1 0,2 2
0.5newc c s c s c      . 

Correctness and Security: One can easily check that this scheme is correctness. To break this 

scheme, one first considers to factor 0q pq  and 1modnx p , then guess   among n  roots and solve 

( )u x  and ( )s x . However, as far as I know, there is not an efficient algorithm which given q , factors 1nx  . 

Theorem 4.1. Given 0 0 0,1 0,2( , , ,{ } , , )i ipk n q pq w b s s

  , suppose factoring 1nx   is hard. Then 

our scheme based on factoring integer problem is semantic secure when 2n  . 

Remark 4.1: For 2n  , there is an interesting example. It is well known that there is 2 2p a b   

for a prime 1mod 4p  . So, for 2( ) 1f x x   and a prime 1mod 4p   large enough, we can set 
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( )u x ax b   with det( ( ( )))Rot u x p , and construct a scheme based on factoring integer problem. This 

special example can also adapt to our following schemes. 

 

4.2.  FHE Based on Diophantine Equation Problem 

 There is an efficient quantum algorithm which factors integers [11]. So in this subsection, we 

construct a new variant of our scheme, whose security depends on the hardness assumption of solving 

Diophantine equation problem. 

 

4.2.1 Costruction 

KeyGen-2 Algorithm: 

(1) Choose a random polynomial ( )u x  such that det( ( ( ))) 2np Rot u x    is a prime, 

( ) 1mod 2u x  , and ( ) 2u x 


 . Evaluate a common root   of ( )u x  and 1nx   under 

modulo p , and 
1

0
( ) [ ]

n i

ii
s x s x Z x




   such that ( ) ( ) mod( 1)nu x s x p x   . 

(2) Select a list of integers 22 ( )modj jd r p  such that ( 1)/ 2 j

jd p    for [ ]j  , 

(log ) / 1p     , where 
1( ) 2jr x  


 . Recall that 

jd  is a ciphertext of 0-bit. 

(3) Encrypt a list of 0-bits: 2 ( ) modi ib r p  such that ( )ir x  is a random polynomial, 

1( ) 2ir x  


 , 0b  is an odd integer, and 

0ib b  for all [ ], ( )i O    . 

(4) Choose a random fraction 0,1 0
2 i

ii
s z

 


  with 

0,1( ) (log )w s    and log2 2p     , and 

set 
0,2 0 0,1 2[ / ]s s p s  , keeping only   bits of precision after the binary point. Encrypt each 

bit iz  of 
0,1s : ( ) (2 ( ) ) modi i i iz Enc z r z p    with 

1( ) 2ir x  


 . Let 0,1 0

2 i

ii
s z

 


 . 

(5) Output the public key 
0 0 0,1 0,2( , ,{ } ,{ } , , )j j i ipk n w d b s s 

   and the secret key 0( , )sk p s . 

Remark 4.2: To generate 
jd , we first choose at random a list of integers 

22 ( )modj jd r p , and 

remain all qualified 
jd , and then for other non-qualified 

jd , evaluate 2 ( )modj j jd r p q p  , where 

( 1)2 j

jq   . In fact, all 
jd  can be obtained by computing 2 ( )modj j jd r p q p  . We observe that 

jd , 

[ ]j   do not reveal any information about p  except with the length of p , if suppose 2 ( )modjr p  is 

distinguishing from the uniform distribution over the set [ ]p . 

Remark 4.3: In the KeyGen-2 algorithm, we can also replace p  by 0q q p  with an odd integer 

0q  when computing 2 ( ) modi ib r p  to further hide modulo p . 

Encryption Algorithm (Enc). Given the public key pk  and a message bit {0,1}m , choose a 

small random subset [ ]T   and a random integer 
12e   , output a ciphertext 

0( 2 )modii T
c b e m b


   . 

Add Operation (Add). Given the public key pk , and two ciphertexts 1 2,c c , evaluate a ciphertext 

1 2 0( ) modc c c b  . 

Multiplication Operation (Mul). Given the public key pk  and two ciphertexts 1 2,c c , evaluate a 

new ciphertext 
1 2 1 0 0( )mod mod ...mod modc c c d d d b   , denoted as 1 2( )c Opt c c  . 

Recall here that the quotient of each optimization is at most 2 , that is, each optimization only 

increase the coefficient of the polynomial corresponding to a ciphertext at most 22  . 

Decryption Algorithm (Dec). Given the secret key sk  and a ciphertext c , decipher the message bit 

0( / 0.5 )mod2m c c s p      . 

Recrypting algorithm (Recrypt-2(pk, c)). 

(1) Evaluate 
1

2 i

i ii
g c z

 


   and 

0,2 0,2g c s  , and sum 1   encrypted rational numbers with 

1t w   non-zero rational numbers: 0,2 0
( ) mod 2ii

x g g



  . 

(2) Assume 0 1 2. kx x x x x   . Evaluate 
0, 1 0 1( , )x Add x x   and mod 2u c . 

(3) Output a new ciphertext 
0, 1( , )newc Add u x  . 
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4.2.2 Correctness 

According to [1], it is not difficult to verify that KeyGen, Enc, Add, Dec Algorithms are correct. For 

Mul algorithm, the reason we use 
jd  is to reduce length of ciphertext to a fixed length, and remain the 

infinity norm of the polynomial corresponding to new generating ciphertext to be controllable small. 

Now, we determine for what parameters all above algorithms are correct. First, we know that the 

infinity norm in each polynomial corresponding to ib , 
jd  is at most 2  according to KeyGen algorithm. For 

the Enc algorithm, the polynomial '( )r x  corresponding to ' ( 2 )ii T
c b e m


    is satisfied to 

'( ) | | 2 2 2r x T   

    , and  taking modulo 0b  increases the norm of '( )r x  at most 2 . Since 

0( 2 )ii T
c b e m b


     with   , hence the infinity norm of ( )r x  corresponding to 

0( 2 )modii T
c b e m b


    is at most 

12 
. For the Dec algorithm, we know that if 

( ) ( ) / 1/ 2r x s x p


  , namely, 1( ) 2r x 


  according to [1], Dec decrypts will be correct. 

For the Add operation, ( )r x  corresponding to 1 2 0( ) modc c c b   is subject to ( ) 3 2r x 


  . For 

the Mul operation, we use the optimization technique in [9]. Without loss of generality, assume that 

( ), 1, 2ir x i   are corresponding to the polynomial of ciphertext ic  and satisfied to ( ) 2ir x  . Because 

2 2

1 2 0'c c c b p    , we need to evaluate modulo 
jd  at most /n       times, and the infinity norm of 

polynomial related to ciphertext 'c  increases at most 22   for each time. So, the polynomial ( )r x  

corresponding to 1 2( )c Opt c c   is satisfied to 
2 2( ) 2 2 /r x n n   


    . When 2,     , 

2 3( ) ( 1)2 2r x n  

   . 

Theorem 4.2. Recrypt-2 algorithm correctly generates a ‘fresh’ ciphertext newc  with the same 

message of c , and supports a product of two ‘fresh’ ciphertexts when 
1

6 2log
t

 

 

 



, where 1t w   and 

log logn t   . 

Proof: By using same method in the proof of Theorem 3.1, we can obtain 

2 2 1 2 2 2 1( ( )) ( (2 ) ) ( (2 ) ) / 2 2t t t tr x t t     


   . So, we have 

1

6 2log
t

 

 

 



.■ 

 

4.2.3 Security 

In our scheme, we hide ( , )p   by replacing it with the ciphertexts of many 0-bits. So, the security 

of our scheme relies on the following hidden polynomial coset problem. 

Definition 4.1 (Hidden Polynomial Coset Problem (HPCP)) The challenger generates the public 

key 
0 0 0,1 0,2( , ,{ } ,{ } , , )j j i ipk n w d b s s 

   and chooses a random bit {0,1}U  . If 0   then the challenger 

calls Enc algorithm to generate 0( 2 ) modii T
c b e b


  . If 1   then the challenger select a random 

number 0[ ]Uc b . Given ( , )c pk , the problem is to guess whether 0   or 1  . 

Indeed, the above HPCP is equivalent to the following Diophantine equation problem. 

Definition 4.2 (Diophantine Equation Problem (DEP)) Given 
1 0( ,{ } ,{ } )j j i ic d b 

 
, we construct a 

Diophantine equation system as follows:  

      

1

,0

1

,0

1

0

2 0, 1,...,

2 0, 1,...,

2 0

n k

j k j jk

n k

i k i ik

n k

kk

r x q p d j

r x t p b i

c x vp c

















    



   


  








                                                              (1) 

Its equivalent formula is: 
1 1 12 2 2

, ,1 0 0 0 0
(2 ) (2 ) (2 ) 0

n n nk k k

j k j j i k i i kj k i k k
r x q p d r x t p b c x vp c

   

    
                       (2) 
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The problem is to decide whether there is a solution in integers for the equation (1) or (2), such that 

, , 0, , , ( )n
j k i k kr r c O b       . 

For an arbitrary polynomial equation with integer coefficients, called Hilbert's Tenth Problem, this 

problem is undecidable [12]. Since the Diophantine equation problem we define is a bounded version 

problem by using the public key pk . So, it is decidable and in NP. An interesting open problem is to 

determine the hardness of the above DEP problem. 

Theorem 4.3. Suppose there is an algorithm A  which breaks the semantic security of our SHE with 

advantage  . Then there is an algorithm D  for solving HPCP and DEP with advantage at least / 2 . The 

running time of D  is polynomial in the running time of A , and 1 /  . 

Proof: The proof of theorem is same as the proof of Theorem 1 in [1], except with substitute the 

modulo p  with 0b .■ 

 

4.2.4 Extension of Large Message Space 

We now extend our scheme to support large message space as that in [1]. We first use KeyGen-2 to 

get the public key 
0 0 0,1 0,2( , ,{ } ,{ } , , )j j i ipk n w d b s s 

   and the secret key ( , )sk p s , and generate 
,1 ,2( , )j js s  

as 
0,1 0,2( , )s s . Then we encrypt the ciphertexts of n  0-bits 

' 2 ( )modj jl r p , and compute 

'( )modj

j jl l p  . Finally, we output the public key 
1 1

0 0 ,1 ,2 1 0( , ,{ } ,{ } ,{ , } ,{ } )n n

j j i i j j j j jpk n w d b s s l   

     and 

the secret key ( , )sk p s . Now Given the public key pk  and a message {0,1}nm , Enc choose a small 

random subset [ ]T   and a random integer 
12e   , evaluate a ciphertext 

1

00
( 2 )mod

n

i j ji T j
c b e l m b



 
    . According to analysis in [1], we decipher the message 

( / 0.5 )mod2m c c s p      . We observe that there is a minor error for the decryption algorithm of 

Section 6 in [SV10]. When refreshing ciphertext, we first get a ciphertext 
jc  of each bit of message m  by 

applying Recrypt algorithm, then evaluate 
1

00
( ( ))mod

n

new j jj
c Opt c l b




  . When performing homomorphic 

operations, we first obtain each encrypted bit of m , then perform appropriately homomorphic operations for 

each bit, and finally combine each encrypted bits into a ciphertext of n  bits message by using same approach 

of computing newc . 

By using similar approach, it is not difficult to verify that all schemes in this paper support large 

message space. 

 

4.3 FHE Based on Approximate GCD 

For the FHE based on factoring integer problem, we may replace 0q pq  with a list of approximate 

multiple integers of p . So, we design a variant scheme of FHE, whose security is based on the hardness of 

approximate GCD problem. Different from the scheme in [vDGHV10], our scheme has larger message 

space.  

Indeed, this scheme is a special case in Section 4.2. Namely, we can choose a constant polynomial 

2 ( ) 2j jr x e  and take 2j j jd pq e  , when computing 
22 ( )modj jd r p . If we further substitute 

0{ }i ib 


 

by 
0{ 2 }i i i ib q p e 

  , then this scheme becomes the scheme of [9]. Here we omit other details. 

Definition 4.4. (Approximate-GCD over the Integers (AGCD)) Given a list of approximate 

multiples of p : 
1

0{ : , , . . 2 }i i i i i i id pq e a e Z s t e  

    , find p . 

Theorem 4.4. (Theorem 4.2 [9]) Suppose there is an algorithm A  which breaks the semantic 

security of our SHE with advantage  . Then there is an algorithm D  for solving AGCD with advantage at 

least / 2 . The running time of D  is polynomial in the running time of A , and 1 /  . 

 

5 Implementation 

For simplicity, we discuss a concrete implementation of the FHE in Section 4.2. Take 4n  , 

50  , 14w  , 2200  , log 8800p    , 8192  , 1024  , 200  . We now analyze how to 

implement our FHE and its security. 
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For 0,1 1
2 i

ii
s z

 


  and encrypted 

0,1s , assume we can continuously separate it to 1023 groups, 

each group has 8 binary bits, but at most single 1-bit in them, and only 14w   groups with single 1-bit 

among these groups.  

To refresh ciphertext c , we evaluate 
/8 1 8 (8 )

1 81 0 1
2 ( 2 )i j i

i j ii j i
g c z c z

    

  
       and 

2 0,2g c s   to get 1024 encrypted rational numbers with 1 15w   non-zero numbers. Hence, we can apply 

symmetric polynomial technique to sum these encrypted rational numbers. According to analysis of [GH10], 

it is not hard to verify that the decryption polynomial is about 
34 15 1842 1024 2   degree-15 monomials. What 

is more, we need to support a product of two refreshing ciphertexts, our scheme requires to evaluate 

polynomials with 3682  degree-30 monomials. 

Since 2 ( )ir x  corresponding to encrypted iz  is satisfied to 502 ( ) 2 2ir x 


  , so ( )r x  

corresponding to the ciphertext of each bit of 
1, jg  is satisfied to 50 54( ) 2 10 2r x


   . It is easy to verify 

that the infinity norm of a degree-32 monomial is at most 18212 . So, log ( ) 1821 368 2189u x

   . Thus, 

log ( ) 2200u x


   is feasible for our scheme. When taking above parameters, the expansion rate of 

ciphertext in our scheme is about 8800 / 4 2200 . 

 

6 CONCLUSION 

By using self-loop bootstrappable technique, we modify the fully homomorphic encryption scheme 

in [SV10], whose security only depends on the hardness of the polynomial coset problem, removing the 

assumption of the sparse subset sum problem. Then to obtain better performance, we construct three variant 

schemes based on hardness assumption of different problems. In addition, we assume our scheme is KDM-

secure, since the public key in our scheme implies the ciphertexts s  of the secret key s  to implement FHE. 
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