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First, we introduce a new concept of approximate lattice problem (ALP), 

which is an extension of learning with errors (LWE) and similar to the 

closest vector problem in lattice. Next, we present two ALP-based public key 

encryption schemes. Then, we construct a fully homomorphic encryption 

scheme (FHE) based on approximate principal ideal lattice problem with 

related modulus (APIP-RM), whose security depends on the hardness of 

solving the APIP-RM problem. Finally, we design a new fully homomorphic 

encryption scheme (FHE) based on approximate lattice problem with 

unrelated modulus (ALP-UM), whose security relies on the hardness of 

solving the ALP-UM problem. 
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1. INTRODUCTION 

This paper presents two new fully homomorphic encryption schemes. In the first scheme, the public 

key is a list of approximate multiples  
0
, ( )i i

b R O n





   for a hidden polynomial f R ，which is 

computed as 2i i ib a f e  , where ia , ie  is the uniformly random elements over R  such that 2 ie n

  

where n  is security parameter,
 

( )2O np   an odd integer, and R  a polynomial ring. The secret key is a 

polynomial s  with ‘small’ coefficient such that ( )mod 0f s p  . To encrypt a message bit x , the 

ciphertext is evaluated as 
, {0,..., }

( 2 )modii T T
c b e x p

 
   , where 2e n


 . To obtain addition or 

multiplication of the messages in the ciphertexts, we simply add/multiply the ciphertexts as the 

addition/multiplication over R . To decrypt a ciphertext c , we compute the message bit 

  mod mod 2
p

x c s x  . Recall that  
p

z  is an integer in ( / 2, / 2)p p  throughout this paper.  

In the second scheme, given a pair of matries 
n n

pA Z  , n nT Z   with (1)T O

 and 

modAT I p , the public key is  
( )

0
( , , (2 2 )mod )

O n

i i i i
pk n p b s A e p

 


   such that / 2is n


 and 

/ 2ie n

 , where I  is an identity matrix . To encrypt a message bit x , the ciphertext is 

, {0,..., }
( 2 )modii T T

c b e x p
 

   , where / 2e n

 and { ,0,...,0} nx x Z  . To decrypt the ciphertext c , 
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we compute the message bit  ( , ) mod 2
p

x c t ,where t
 
is the first column vector of T , the first coordinate 

0t
 
of t  with

 
0 mod 2 1t  , and 

1( , )c T  is the inner product of vectors. For the homomorphic operations of 

ciphertexts, we will give in Section 7. 

 

1.1 Our Contribution 

The main difference between our schemes and previous work is efficiency and underlying hardness 

assumption. The public key size is 3( )O n  bits, and the expansion factor of ciphertext 2( )O n  in our scheme, 

which can be improved to ( )O n . The security of the first scheme relies on the hardness assumption of the 

decision version of finding an approximate principle ideal lattice problem over related modulus (APIP-RM), 

given a list of approximate multiples of hidden polynomial f . The security of the second scheme is based 

on the hardness of solving approximate lattice problem with unrelated modulus (ALP-UM).  

In high level, our schemes are similar to the fully encryption scheme over the integers [1]. But the 

secret key in their scheme is a big odd integer, whereas the secret key in our schemes is modular lattice. 

Suppose the determinant p of the circulant matrix of the secret key s  is a product of distinct smoothing 

primes, we reduce the LWE/Ring-LWE problem to its corresponding decisional ALP/APIP.  

As far as we know, the approximate lattice problem does not appear among previous works, except 

the approximate GCD problem [1]. Our work extends AGCD to approximate lattice problem, namely, we 

generalize AGCD from one dimension to multiple dimensions. We think that this problem is independent of 

interest. 

 

1.2 Related work 

Many researchers [2-5] have worked at this open problem since Rivest, Adleman, and Dertouzos [6] 

studies a privacy homomorphism, Until 2009, Gentry [7] constructed the first fully homomorphic encryption 

using ideal lattice. In Gentry’s scheme, the public key is approximately 
7n  bits, the computation per gate 

costs 6( )O n  operations. Smart and Vercauteren [8] presented a fully homomorphic encryption scheme with 

both relatively small key 3( )O n  bits , ciphertext size 1.5( )O n  bits and computation per gate at least 3( )O n  

operations, which is in some sense a specialization and optimization of Gentry’s scheme. Dijk, Gentry, 

Halevi, and Vaikuntanathan [1] constructed a fully homomorphic encryption scheme over the integers based 

on approximate integer GCD, and proved that its security is equivalent to the hardness of solving 

approximate GCD. Stehle and Steinfeld [9] improved Gentry's fully homomorphic scheme and obtained to a 

faster fully homomorphic scheme, with  3.5( )O n  bits complexity per elementary binary 

addition/multiplication gate, but the hardness assumption of the scheme security in [9] is stronger than that in 

[1]. Gentry and Halevi [10] implemented the first fully homomorphic scheme and presented many 

optimizations about it. 

 

1.3 Organization 

Section 2 recalls some notations, and the definitions of lattice, learning with error and approximate 

lattice problem. Section 3 gives two new public key encryption schemes based on the ALP problem. Section 

4 constructs a somewhat homomorphic encryption based on APIP-RM. Section 5 transforms the somewhat 

homomorphic encryption into fully homomorphic encryption. Section 6 analyzes the security of our scheme 

and discusses two possible attacks. Section 7 proposes a new fully homomorphic encryption based on ALP-

UM. Section 8 concludes this paper and gives some open problems. 

 

2. Preliminaries 

2.1 Notations 

Let   be a security parameter. ( )k k   a power of 2, and [ ]k  a set of integers {0,1,..., }k . Let p  

be an integer, [ ] / ( 1)kR Z x x  , /pR R pR . For u R , u


 denotes the infinity norm of its coefficient 

vector. Let R k   be the expansion factor of R , that is, u v k u v
  

    , where   is multiplication 

in R . Let r S  denote an element choosing from S by the distribution  . Let cA B  denote 

computationally indistinguishing distributions by arbitrary probabilistic polynomial time algorithm. 
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2.2 Lattice and Learning with Error (LWE) 

Given n  linearly independent vectors 
1 2, ,..., n

mb b b R , the lattice is the set 

1 2 1
( , ,..., ) { , }

m

m i i ii
L b b b x b x Z


   of all integer linear combinations of the 

ib ’s. We also denote by matrix 

B  the 
ib ’s. In this paper, we only consider the lattice over the integers, i.e., n

ib Z .  

For the coefficient vector 
0 1 1( , ,..., )T

nu u u u   of u R , we define its cyclic rotation 

1 0 2( ) ( , ,..., )T

n nrot u u u u   , and the circulant matrix 1( ) ( , ( ),..., ( ))n TRot u u rot u rot u . ( )Rot u  is called the 

rotation basis of the ideal lattice ( )u .  An ideal I R  is principal if it only has a single generator. 

Definition 2.1. (Learning With Error (LWE) [11]). Let ,n p  be integers related to security 

parameter  , and   a distribution over 
pZ . Given a list samples ( , )i is b  of the distribution , ,n pD   over 

1n

pZ 
 such that 

n

pa Z ,
n

i ps Z , 
ie   and , modi i ib s a e p   , the LWE problem 

, ,n pLWE 
 is to 

distinguish the distribution , ,n pD   from the uniform distribution over 
1n

pZ 
. 

Definition 2.2. (Learning with Errors in a Ring of Integers [12]). Let ,k p  be integers related to 

security parameter  , and   a distribution over 
pR . Given a list samples ( , )i ia b  of the distribution , ,k pD   

over 
p pR R  such that pa R ,

i ps R , 
ie   and 

i i ib s a e   , the RLWE problem 
, ,k pRLWE 

 is to 

distinguish the distribution , ,k pD   from the uniform distribution over 
p pR R . 

 

2.3 Approximate Lattice Problem 

In the following, we introduce a new concept, called approximate lattice problem (ALP). Our 

starting point is from AGCD defined in [1]. At the same time, ALP generalizes LWE [11] as well. Indeed, 

ALP is to adapt from AGCD over the integers to other rings. 

Definition 2.3. (Approximate-GCD over the Integers (AGCD)[1]). Given a list of approximate 

multiples 
1{ : , , 2 }n

i i i i i ib s a e s Z e Z e 

      of an odd integer a , find a . 

Definition 2.4. (Approximate Lattice Problem (ALP)). Let , ,n m p  be integers related to security 

parameter  , and   a distribution over 
m

pZ . Given a list samples ib  of the distribution , , ,n m pD   over 
m

pZ  

such that 
n m

pA Z  ,
n

i ps Z , ie   and i i ib s A e  , the ALP 
, , ,n m pALP 

 is to distinguish , , ,n m pD   from 

the uniform distribution over 
m

pZ . 

Definition 2.5. (Approximate Principal Ideal Lattice Problem (APIP)). Let ,k p  be integers 

related to security parameter  , and   a distribution over 
pR . Given a list samples ib  of the distribution 

, ,k pD   over 
pR  such that pa R ,

i ps R , 
ie   and 

i i ib s a e   , the APIP problem 
, ,k pAPIP   is to 

distinguish the distribution , ,n pD   from the uniform distribution over 
pR . 

Definition 2.6. (General Approximate Lattice Problem (GALP)). Let , , ,n k m p  be integers 

related to security parameter  , and   a distribution over 
m

pR . Given a list samples ib  of the distribution 

, , , ,n k m pD   over 
m

pR  such that 
n m

pA R  ,
n

i ps R , ie   and i i ib s A e  , the GALP problem 

, , , ,n k m pGALP   is to distinguish the distribution , , , ,n k m pD   from the uniform distribution over 
m

pR . 

For the GALP problem, we get the concrete ALP problem if we set 2k  ; we get the APIP problem 

if we set 1, 1n m  . 

We can also define the general approximate lattice problem over the integers without modulus.  

Definition 2.7. (General Approximate Lattice Problem over the Integers (GALP-I)). Let 

, ,n k m  be integers related to security parameter  , and   a distribution over mR . Given a list samples ib  

of the distribution , , ,n k mD   over mR  such that 
n mA R  , n

is R , ie   and i i ib s A e  , the GALP 

problem 
, , ,n k mGALP   is to distinguish the distribution , , ,n k mD   from the uniform distribution over mR . 

 

3. Public Key Schemes Based on ALP 
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In this section, we first present new trapdoor functions. Then, we construct two public key schemes 

based on the ALP problem by using our trapdoor functions. 

 

3.1 Trapdoor Functions 

For the ALP problem, the first trapdoor function we require is a trapdoor sampling algorithm 

constructed by Alwen and Peikert [13]. For an almost uniformly random matrix 
n m

pA Z  , the trapdoor 

m m

pT Z   generated by this trapdoor algorithm can be used to solve the ALP problem. That is, given 

b sA e  , it can be used to find s . 

Lemma 3.1. (Theorem 3.1 and 3.2 [13]). There is a probabilistic polynomial-time algorithm that, 

on input a positive integer n, positive integer p , and a poly(n)-bounded positive integer 8 logm n p , 

outputs a pair of matries 
n m

pA Z  , m mT Z   such that A  is statistically close to uniform over 
n m

pZ 
, 

0modAT p , and ( log )T O n p

 . 

To construct the trapdoor algorithm based on the APIP problem, we first fix ( )k k   and choose a 

small coefficient principal ideal t R , then evaluate the orthogonal principal ideal a  of t  over 
pR , where 

| det( ( ))p Rot t  is an appropriate integer. 

Lemma 3.2. Given an arbitrary t R , there is a polynomial time algorithm that generate the 

orthogonal principal ideal a  of t  over 
pR  with | det( ( ))p Rot t , that is, 0moda t p  . 

Proof: We construct a linear equation system according to the relationship 0moda t p   as 

follows: 

0 1 1 0 0

1 0 2 1 2

1 2 0 1 1

k

k k k k

t t t a qv

t t t a qv

t t t a qv



   

     
    

    
    
    
    

, where 
i qv Z . 

Since | det( ( ))p q Rot t , we choose a uniformly random vector 
n

qv Z  and solve the integer 

coefficients '

ia  for 'a  modulo q  by using Cramer rule. By | det( ( ))p Rot t , we get 'moda a p . ■ 

The aim we introduce the ALP problem is to construct a new fully homomorphic encryption. But in 

the Lemma 3.1, the entries of the trapdoor T  is too large and its dimension m  depends on the modulus p . 

So, we also apply the above method to generate the short basis for general lattice. Our construction differs 

from one of [13-14]. Here we first fix ,n m  and n m , choose a random basis m mT Z   with small entries, 

then evaluate the random orthogonal basis ' m m

pA Z   for T  by applying Cramer rule such that 

' 0modA T p , where | det( )p T , and finally set A  to be equal to n  random different rows of 'A . Whereas 

the algorithms in [13-14] first fix , ,m n p , and then generate the matries ,A T  such that 0modAT p  and 

( log )T O n p . 

Lemma 3.3. There is a probabilistic polynomial time algorithm that, on input positive integers 

n m , outputs a pair of matries 
n m

pA Z  , m mT Z   such that 0modAT p , (1)T O

 , and | det( )p T . 

In Lemma 3.3, we assume that A  is statistically close to uniform over 
n m

pZ 
. Whether this assumption can be 

proved remains an open problem. Of course, if one can prove that the instantiation of ALP generated by A  is 

almost uniform over 
m

pZ , then it is also feasible for our use.  

Since there is a dependent relationship among the columns of A  (resp. a ) over the modulus p  in 

Lemma 3.1-3.3, they can not be uniform over 
n m

pZ 
 (resp. 

pR ). So, we give a new trapdoor in the following 

Lemma. 

Lemma 3.4. There is a probabilistic polynomial-time algorithm that, on input positive integers ,m p

, outputs a pair of matries 
m m

pA Z  , m mT Z   such that A  is statistically close to uniform over 
m m

pZ 
, 

modAT I p , (1)T O

 , and gcd( ,det( )) 1p T  , where I  is an identity matrix of 

m m

pZ 
. 
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Proof: Given ,m p , one first chooses at random m mT Z   with (1)T O

  and det( )q T , and 

decides whether gcd( , ) 1p q  . If gcd( , ) 1p q  , it is easy to evaluate that 'A  and the inverse 'q  of q  over 

modulus p  such that 'A T q I  and ' 1modq q p . Now, we set ( ' ')modA q A p  and get 

modAT I p .■ 

It is obvious that the Lemma 3.4 works over the ring 
pR  as well since the principal ideal lattice is a 

special case of general lattice. 

 

3.2 Public Key Scheme Based on ALP 

For simplicity, we only give ALP-based public key encryption schemes in this section. The first 

public key encryption scheme is based on the ALP problem with related modulus p , called ALP-RM, 

whereas the second scheme is based on the ALP problem with unrelated modulus p , called ALP-UM. 

3.2.1 Construction of PKE-1 

Key Generating Algorithm (PKE-1.KeyGen): 

(1) Let , ,n m p  be integers related to security parameter  , and p  an odd integer. By using 

Lemma 3.1, one generates a pair of matries 
n m

pA Z  , m mT Z   such that A  is statistically 

close to uniform over 
n m

pZ 
, 0modAT p , det( )T  is an odd integer, and ( log )T O n p


 . 

(2) Let   be a distribution over 
m

pZ . Choose a list ( )O   elements 2i i ib s A e   over 
m

pZ  

such that 
n

i ps Z , 
ie   with / 2ie n


 . 

(3) Output the public key ( , , , [ ])ipk m p b i    and the secret key ( )sk T . 

Encryption Algorithm (PKE-1.Enc). Given the public key pk  and a message 
2

mx , choose a 

random subset [ ]S   and an independent ‘small’ error term e   with / 2e n

 . Evaluate a ciphertext 

2ii S p
c b e x


     . 

Decryption Algorithm (PKE-1.Dec). Given the secret key sk , and the ciphertext c , decipher 

    1

22 2

( )
p

x cT T   
   

. 

Correctness: When 2 ( 2 )ii S
p x e T

 
  , Dec works correctly because 

   

 

 

 

   

     

1

22 2

1

2
2 2

1

2
2 2

1

22 2

1

2 2 2

1

2 2 2 2

( )

( 2 ) ( )

( 2 ) ( )

( 2 ) ( )

( )

( )

p

i ii S p

ii S p

ii S

cT T

x s A e T T

x e T T

x e T T

xT T

x T T

x



















  
   

          

         

     

   

   







 . 

 

3.2.2 Construction of PKE-2 

Key Generating Algorithm (PKE-2.KeyGen): 

(1) Let ,m p  be integers related to security parameter  , and p  an odd integer. By using Lemma 

3.4, one generates a pair of matries 
m m

pA Z  , m mT Z   with (1)T O

  such that A  is 

statistically close to uniform over 
m m

pZ 
, modAT I p , where I  is an identity matrix of 

m m

pZ 

. 

(2) Let  ,   respectively be the distributions over mZ . Choose a list ( )O   elements 
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(2 2 )modi i ib s A e p   over 
m

pZ  such that 
is   with / 2is m


 , 

ie   with 

/ 2ie m

 . 

(3) Output the public key ( , , , [ ], )ipk m p b i     and the secret key ( )sk T . 

Encryption Algorithm (PKE-2.Enc). Given the public key pk  and a message 
2

mx Z , choose a 

random subset [ ]S   and an independent ‘small’ error term e   with / 2e m

 . Evaluate a 

ciphertext 2ii S p
c b e x


     . 

Decryption Algorithm (PKE-2.Dec). Given the secret key sk , and the ciphertext c , decipher 

    1

22 2

( )
p

x cT T   
   

. 

Correctness: Dec works correctly because 

   

   

   

   

1

22 2

1

22 2

1

2 2 2

1

2 2 2

( )

( 2 ) ( )

(2 ) ( )

( )

p

p

cT T

sA e x T T

s e x T T

xT T

x









  
   

    
   

    

   



. 

In the above, we use 0mod2s   and 2 ( 2 )p s x e T


    because , ,s e T  all have small entries. 

 

4. Somewhat Homomorphic Encryption (SHE-1) 

In Section 4, we present a somewhat homomorphic encryption based on the APIP with related 

modulus p , call APIP-RM. In Section 5, we transform the SHE-1 scheme into a new fully homomorphic 

encryption (FHE-1). In Section 6, we analyze the security of the FHE-1 and discuss two possible attacks for 

the FHE-1. 

 

4.1 Construction 

To construct fully homomorphic encryption, the SHE requires to evaluate an arbitrary circuit with 

depth (log )d O n . Moreover, the depth of its decryption circuit is less than d . Thus, we first choose 

special secret key to implement FHE, and then extend it to general parameters setting. 

Key Generating Algorithm (SHE-1.KeyGen): 

(1) Select a random polynomial 
1

0

n i

ii
s s x




  such that 

0 2 1s    with [ ] \ 0  , 

, [ 1] \ 0is S i n    and 
1

0
( ) (log )

n

ii
l w s n




  , and evaluate det( ( ))p Rot s  such that 

2 np   is an odd integer, where 1{0,1,2 ,...,2 }S  ,   in general is a constant integer, ( )iw s  is 

the hamming weight of 
is . 

(2)  By Lemma 3.2, one compute a random f  over R , 
1

0

n i

ii
f f x




  subject to 0mods f p  . 

(3)  Pick ( )O n   uniformly ( 2 )modi i ib a f e p    with / 2ie n

 . 

(4)  Output the public key ( , , , [ ])ipk n p b i    and the secret key ( )sk s . 

Encryption Algorithm (SHE-1.Enc). Given the public key pk  and a message bit {0,1}m , 

choose a random subset [ ]T   with 2T n   and an independent ‘small’ error term e  with ||2 ||ie n  . 

Evaluate a ciphertext ( 2 )modii T
c b e m p


   . 

Add Operation (SHE-1.Add). Given the public key pk , and the ciphertexts 1 2,c c , evaluate the 

ciphertext 1 2( )modc c c p  . 

Multiplication Operation (SHE-1.Mul). Given the public key pk , and the ciphertexts 1 2,c c , 

evaluate the ciphertext 1 2( )modc c c p  . 
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Decryption Algorithm (SHE-1.Dec). Given the secret key sk , and the ciphertext c , decipher 

 ( )mod mod 2
p

m c s x  . 

Remark 4.1: We can replace ( , , , [ ])ipk n p b i    with ( , , )pk n p b  such that 

( 2 )modb a f e p    with ||2 ||e n  . When encrypting a message bit {0,1}m , we select at random 

1 2,u u R  with ||2 ||iu n  , and output a ciphertext 
1 2( 2 )modc b u u m p    . 

 

4.2 Correctness 

 Lemma 4.1. The above SHE-1.Dec algorithm is correct, if the infinity norm of the error term in the 

ciphertext is less than 2/ (4 2 )p n  . 

Proof. Given the ciphertext c  and the secret key sk , it is not difficult to verify that c  has general 

form ( 2 )modc a f e m p    . To decrypt c , we evaluate 

     ( 2 ) 2s p p p
c c s a f e m s e s m s           . 

Since 
22 / (4 2 )e p n 


  , 

2

1
(2 ) / (4 2 ) / (4 )sc e m s s p n p n

 
       . By 

0 1mod2s  , we get 

the message bit 
0mod mod2 ( )mod2sm c x m s   .■ 

Remark 4.2: The reason the error term is less than / (4 )p n  is to implement the Recrypt algorithm 

in the fully homomorphic encryption. 

Lemma 4.2. The above scheme is correct for arbitrary arithmetic circuit C  with addition and 

multiplication gates, and circuit depth log( 2) loglog 2d n n      . 

Proof. Assume ( 2 )mod , 1,2
j

j i j ji T
c b e m p j


     are the ciphertext generated by Enc. To 

correctly decrypt, the error term of the ciphertext output by arithmetic circuit can not be too large. The error 

term in addition gate is linearly rising, whereas the error term in multiplication gate is exponentially 

increasing. So, the multiplication operation dominates the depth of arithmetic circuit. Now, we estimate the 

bound of the error term in the ciphertext generated by one multiplication operation. 

1 2

1 2

1 1 2 2

1 2

mod

 ( 2 ) ( 2 ) mod

 ( 2 ) mod

i ii T i T

c c c p

b e m b e m p

a f e m m p

 

 

     

   

  . 

where 
1 2 2

1 1 2 2(( 2 ) ( ) 2 2 )modi i ii T i T i T
a b e m a e e m p

  
         , 

1 2 2
1 2 2 1 2(( ) ( 2 2 ) ( )modi i ii T i T i T

e e e e e m m e e p
  

          .  

So,  

1 2 2

1 2 2

1 2 2 1 2

1 2 2 2

5

2 (( 2 2 ) ( 2 2 ) ( 2 2 )

(( 2 2 ) 2 2 2 2

(( 2) )(( 2) 1) ( 2)

i i ii T i T i T

i i ii T i T i T

e e e e e m m e e

n e e e e m e e

n n n n n n n n n n

n

   


  
  

       

     

        



  

   . 

In the other hand, the error terms in the ciphertexts 1 2,c c  are at most 
2n . So, the error term for one 

multiplication is less than 
1 12 2 2 2 1( ) ( )n n n
  . To correctly decrypt, the arithmetic circuit depth d  must be 

satisfied inequality 
12 2 1 2( ) / (4 2 )

d

n p n     , namely, log( 2) loglog 2d n n      .■ 

 

4.3 Performance 

The public key size ( , , , [ ])ipk n p b i    is 3( )O n  , the secret key size ( )sk s  is ( )O n . The 

expansion factor of ciphertext is 2( )O n  . The running times of the Enc, Dec, Add, Mul algorithms are 

respectively 3( )O n  , 2( log )O n n , 2( )O n  , and 3( log )O n n . 

 

5. Fully Homomorphic Encryption (FHE-1) 

5.1 Construction of FHE-1 
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We design an FHE-1 from the SHE-1 by using self-loop bootstrappable technique. We give a new 

algorithm Recrypt, which refreshes a ‘dirty’ ciphertext c  to a new ciphertext 
newc  with ‘smaller’ error term 

and the same plaintext of c . To do this, we require to add the ciphertexts of encrypted the secret key to the 

public key. So, we assume that our scheme is KDM-secure. We modify SHE-1 as follows: 

FHE-1.KeyGen Algorithm: 

(1) Generate ( , , , [ ])ipk n p b i    and ( )sk s  by using SHE-1.KeyGen algorithm. 

(2) Select at random ( 1)n    pair elements 
, , [ 1], [ ]i ja R i n j     , and perturbed error terms 

,i je R  such that 
,||2 ||i je n  , and encrypt the j-th bit 

,i js  of 
is  as 

, , , ,( 2 )modi j i j i j i js a f e s p    . We denote 
,0

2 j

i i jj
s s




  and 

1

0

n i

ii
s s x




 . 

(3) Output the public key 
0( , ,{ } , )i ipk n p b s

  and the secret key ( )sk s . 

FHE-1.Recrypt Algorithm: 

(1) Set 
0 0c c , 

i ic p c   for [ 1] \ 0i n  , and , 2 /j

i j ih c p   for [ 1], [ ]i n j    , keeping 

only logk n  bits of precision after the binary point for each ,i jh , where , 2 /j

i j ih c p   is 

satisfied to , 2 / 1/ (2 )j

i j ih c p n   . 

(2) Evaluate , ,
2

i i j t jj r
h h s




  
   for 0modi t n  , [ 1]i n  , where 1r   if 0i  , otherwise 

0r  , and 
1

0,00
0.5 mod 2

n

ii
g h h




   
  . 

(3) Evaluate   ,020mod 0mod
( )mod2 ( )mod2i t i ti t n i t n

u c s c s
   

     . 

(4) Output  a new ciphertext 
newc u g  . 

Theorem 5.1. The FHE-1.Recrypt correctly generates a ‘fresh’ ciphertext newc  with the same 

message of c , and two homomorphic decrypted ciphertexts support one multiplication when 
6 3 4 1 22 / (4 2 )n nn p n    . 

Proof: First, we have 

0 0 1 1 2 2 1 1

0 0 1 1 2 2 1 1

0 mod

( ) mod( 1) mod

( ) ( ) ( )

n

n n n

n n n

i ti t n

c s x x

c s c s c s c s

c s p c s p c s p c s

c s

  

  

 

 

    

       



               (5-1). 

So, the decryption algorithm computes as follows 

0 mod 0 mod

,0 mod 0

,0 mod 0

, ,0

mod( 1) mod mod 2

( ) mod 2) ( ( / ) 0.5 mod 2)

( / 2 0.5 mod 2)

( ( 2 ) / 0.5 mod 2)

(

n

p

i t i ti t n i t n

j

i t ji t n j

j

t j ii t n j

i j t jj

c s x x

c s c p s

u c p s

u s c p

u h s







   

  

  



   

      

    
 

    
 

 

 

 

 

0 mod

1

0,00

0.5 ) mod 2

( 0.5 ) mod 2

i t n

n

ii
u h h

u g

 





 
 

    
 

 

 



  (5-2). 

So, we merely prove that FHE-1.Recrypt correctly evaluates the formula (5-2) in the form of 

ciphertexts. Since   ,020mod
( )mod 2i ti t n

u c s
 

   and 
,0||2 ||te n   in 

,0ts , we evaluate the sum modulo 2 

of n  ciphertexts. Hence, the error term in the ciphertext u  is at most 
2n . 

To estimate the error term of g , we first determine the error term of ih . According to FHE-

1.KeyGen, there is at most single 1-bit among 
,t js , [ ]j   except for 0s  that includes two 1-bits. So, the 
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error term in , ,
2

i i j t jj r
h h s




  
 

 
is at most ( 1)n   . What is more, there is at most 1l   non-zero 

numbers among encrypted 1n  rational numbers via 
1

0
( )

n

ii
l w s




 . 

Since 
, 2 / 1/ (2 )j

i j ih c p n   , we get ,0
( 2 ) / 1/ (2 )j

i t j ij
h s c p n




   . So, 

1

0,00 0mod

1
/

2

n

i i ti i t n

l
h h c s p

n



  


     . According to Lemma 4.1, there is an encrypted integer z  such 

that 
1

0,00

1

0,00 0 mod 0 mod
/ /

( 1) / 2 1/ (4 )

1/ 2

n

ii

n

i i t i ti i t n i t n

h h

h h c s p c s p

n n z n

z







    



     

   

 



   . 

So, suppose 
1

0,0 0 10
' . ...

n

i ki
g h h g g g



 
   , then 

0 1( )mod2g g g  . 

By applying the symmetric polynomial technique [10], we use the polynomial with total degree 

1l   to evaluate the sum of 1n  encrypted rational numbers with at most 1l   nonzero numbers. It is easy 

to verify that the number of degree 1l   monomials in the polynomial representing our addition of 

ciphertexts is equal to 
1 1 1

...
1/ 2 1/ 4 1

l l l

l l

       
       

            
, which is less than 1( 1)ll  . The error term of a 

degree 1l   monomial over ciphertexts is at most 2 1( ) ln  . So, the error term of g  is at most 

( 1) 2 1( 1) ( )l ll n  .  

To obtain FHE, the scheme must support another homomorphic multiplication. So, the scheme 

needs to correctly decrypt a ciphertext with error term ( 1) 2 1 2 2( 1) 4 2(( 1) ( ) ) 2( 1) ( )l l l ll n n l n        . Thus, 

2( 1) 4 2 22( 1) ( ) / (4 2 )l ll n p n     by Lemma 4.1.■ 

 

5.2 General Parameters 

In the FHE-1.KeyGen algorithm, we use a special form for the secret key. Indeed, one may set 

general parameters. Assume 
1

0

n i

ii
s s x




  with 2s 


  and (2 )np O   an odd integer. One selects at 

random a polynomial 
1

0

n j

jj
u u x R




   with ( ) 1jw u   and 

1

0
( ) (log )

n

jj
l w u n




  , and take v s u  . 

We then encrypt u  as u  same as s  in FHE-1.KeyGen, and output the public key 
0( , ,{ } , , )i ipk n p b u v

  

and the secret key ( )sk s . 

For the general parameters of the secret key, we will use it to generate p  as a product of smoothing 

primes and prove the security of scheme in the following. 

In addition, we can also apply the Gentry’s method, which introduces the hardness assumption of 

the sparse subset sum problem when implementing FHE-1. 

 

5.3 Extension to Large Message Space 

For the FHE-1, one can reduce the expansion factor of ciphertext from 2( )O n   to ( )O n  by 

extending plaintext message space. For a message {0,1}nm , one maps it to a polynomial 
1

0
( )

n i

ii
m x m x






. FHE-1.Enc is ( 2 ( ))modii T
c b e m x p


   , and FHE-1.Dec is  1( ) (( mod 2) ) ( mod 2)

p
m x Rot s c s  

. 

In this case, we add to the public key the ciphertexts vs  of the inverse polynomial 1( mod2)vs s   

of mod 2s  to unpack message. Moreover, when FHE-1.Recrypt refreshes a ciphertext, one gets n  

ciphertexts:  
1

0
( mod 2)

n i

i v pi
C x s c s




   , where each 

iC  is a ciphertext of one bit. So, we must pack 

1

0

n i

ii
C x




  consisting of n  ciphertexts into a new ciphertext 

1

0
( )mod( 1)

n i n

new ii
c C x x




   . 
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One can perform homomorphic bit operations for the large message space above. To evaluate 

homomorphic operation over the bits, one firstly calls FHE-1.Recrypt to obtain each encrypted bit of 

message m , then performs homomorphic operations over each bit, and finally packs the ciphertexts of n  

encrypted bits into a ciphertext of n  bits message by evaluating 
newc . 

 

6. Security of FHE-1 

6.1 Security Analysis 

The security of the SHE-1 follows directly from the hardness of the decisional hidden principal ideal 

lattice problem. The proof of the following theorem adapts the proof of Theorem 3 of [15]. We include it 

here for completeness. 

Theorem 6.1. Suppose there is an algorithm A  which breaks the semantic security of our SHE-1 

with advantage  . Then there is a distinguishing algorithm D  against 
, ,k pAPIP RM   with running in 

about the same time A  and advantage at least / 2 . 

Proof. We construct a distinguishing algorithm D  with advantage at least / 2  between the 

distribution , ,n pD   and the uniform distribution over 
pR . The algorithm D  receives as input c . D  picks at 

random {0,1}  , sends the challenge ciphertext 2 modc p  to A , then returns 1  if A  guesses the right 

 , and otherwise 0 . We omitted the remainder of proof, which is almost identical to [15]. ■ 

Recall that f  is an arbitrary in the 
, ,k pRLWE 

 problem in Definition 2.2, whereas f  in the SHE-1 

is satisfied to | det( ( ))p Rot f . Thus, the hardness result in this paper is only available for this special 

, ,k pRLWE 
 problem. 

Theorem 6.2. Suppose p  is the product of distinct smoothing primes. Then there is a probabilistic 

polynomial time reduction from 
, ,k pRLWE 

 to 
, ,k pAPIP RM  . 

Proof. It is obvious that by removing a , we transform an instantiation of 
, ,k pRLWE   into an 

instantiation of 
, ,k pAPIP RM  .■ 

Theorem 6.3. Suppose p  is a product of distinct smoothing primes. Then there is a probabilistic 

polynomial time reduction from 
, ,k pRLWE 

 to the search 
, ,k pRLWE 

. 

Proof. The proof of Theorem 6.3 is adapted from that of Lemma 3.6 in [16]. ■ 

Theorem 6.4. Suppose p  is the product of distinct smoothing primes. Then there is a probabilistic 

polynomial time reduction from the search 
, ,k pRLWE 

 to 
, ,k pAPIP RM  . 

From Theorem 6.4, we know that breaking our scheme is harder than solving the 
,fRLWE   problem when p  

is the product of distinct smoothing primes. 

Theorem 6.5. Suppose the 
, ,k pAPIP RM   problem is hard for any PPT adversary A . Then the 

FHE-1 is semantic security. 

 

6.2 Known Attack 

6.2.1 Attacking Generator of the Secret Key 

When p  is a prime, gcd( 1, ) 1modnx s p  . Since one can factor 1nx   modulo p  and guess a 

principal ideal generator for the secret key s . For example, 
3 2 22 1 ( 8)( 11 15)mod17s x x x x x x        , where det( ( )) 17p Rot s  , 

1 ( 9)( 15)( 2)( 8)mod17nx x x x x      . So, one can enumerate the generators of all possible principal 

ideals of s , and find a small generator for each principal ideal. The hardness of breaking the scheme is 

reduced to finding a small generator of a principal ideal given two integers ( , )ip  , where i  is the i-th root 

of 1nx   modulo p . We observe that in fact one must not find the smallest generator of a principal ideal, 

and only needs to solve a ‘small’ multiple of the smallest generator. So, we must avoid this attack to 

guarantee the security of our scheme. We may adopt methods as follows. 

(1) The security of our scheme depends on factoring integer problem. In order to use small n , such 

as n=64, 128, we set the modulo p  to be a product of two large primes. For example, one selects at random 

, 1,2is R i   with det( ( ))i ip Rot s  primes, and takes 
1 2 mod( 1)ns s s x    and 1 2p p p . To implement 

FHE, we apply the method of general parameters in Section 4.2. As far as we know, there is not an efficient 
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algorithm which factors 1nx   modulo p  without factoring p . This is probably independent of interest. 

Since all previous schemes are based on (principal) ideal lattices [7, 8, 10] or the approximate GCD [1].  

(2) We may use p  to be the product of ( )O n  distinct smoothing primes. For example, one picks 

( )O n   small polynomials , [ ]is R i   , whose determinants det( ( ))i ip Rot s  of their circulant matrices 

are co-prime smoothing factors and (1)O

ip n , and takes 
0

mod( 1)n

ii
s s x




   and 

0 ii
p p




 . For this 

case, we require that the lattice dimension n  are large enough to ensure the above attack to be infeasible for 

arbitrary subset with size (log )n  of [ ] . It is easy to check that the number of all possible distinct principal 

ideals of s  is 
( )O nn . To obtain FHE, we also apply the method in Section 4.2.  

(3) We can set large lattice dimension, lower hamming weight of secret key, and smaller error term 

in original ciphertexts. For example, we take 8192n  , 460p  , 
1 1 7

,0 0 0
( 2 )

n ni j i

i i ji i j
s s x s x

 

  
     such 

that 
1

,0
1

n

i ji
s




  for [7]j . In FHE-1, we take 1e


 . In this case, we change Recrypt as follows: 

 Set /g c p , keeping only 8 4 3 15      bits of precision after the binary point for each 

coefficient 
ig  of g . 

 Evaluate , 2 j

j ju g s   for [7]j , where 
, js  is the ciphertexts of 

1

, ,0
2

n j i

j i ji
s s x




 , and 

7

1 0
0.5jj

u u h


  
  . 

 Evaluate  2 2
u c , and output a new ciphertext 

1 2( )modnewc u u x  . 

If using large message space, one requires to transform n  ciphertexts into a new ciphertext. 

Since the error term size of 
ju  is at most 

148192 2 2  , one can sum 8 encrypted rational numbers 

ju  and easily verify that the error size of 
1u  is at most 2182  by applying the method in [10]. To support one 

multiplication over homomorphic decrypted ciphertexts, we set 4572p  . To quickly generate the secret key, 

we use the method in Section 4.2. On the other hand, the approximation factor of lattice reduction algorithm 

is about 2*8192 469(1.02) 2  over average case according to [17]. 

 

6.2.2 Lattice Reduction Attack over the Ciphertexts 

For a 0-bit ciphertext b  in the public key, one can construct a ( 1) ( 1)n n    matrix as follows: 

0

1

1

0 0 0

1 0 0

0 1 0

0 0 1n

p

b

M b

b 

 
 
 
 
 
 
 
 

. 

According to the Minkowski’s Theorem, the lattice generated by M has non-zero vector less than 
1/( 1)1 2nn p n   . On the other hand, by the parameter of our scheme, there is a non-zero vector s  such 

that 

0 1 10 mod

0

1

1

2

1 0 0

0 1 0

0 0 1

i j ni j n

n

e s s s s

b

b

b

 



 
 
 
 
 
 
 
 



 

However, it is not difficult to verify that there are exponential numbers of vectors with length 

0 1 10mod 2

( 2 )i j ni j n
e s s s s   , which is maybe not the shortest non-zero vector of the above lattice. 

Thus, one can not get the secret key by this attack method. 

 

7. Fully Homomorphic Encryption (FHE-2) 

Since the determinant p of circulant matrix of the secret key is public in FHE-1, one can factor x
n
+1 

mod p and attempt to evaluate the generator polynomial of the secret key. So, to avoid this attack, we will 
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construct ALP-UM based fully homomorphic encryption scheme (FHE-2). For efficiency, we also construct 

a self-loop fully homomorphic encryption scheme. In this section, we first discuss how to perform 

homomorphic operations over the PKE-2 scheme, next construct a new fully homomorphic encryption, 

analyze its security, and finally discuss issues of optimization and implementation. Notice that we use 

message space 
2x Z , instead 

2

mx Z  for PKE-2 in the following section. 

7.1 Homomorphic Operations of PKE-2 

It is obvious that the PKE-2 supports addition operation over the ciphertexts. So, we only discuss 

how to perform multiplication operation. According to the method of [18-20], they consider the 

multiplication operation over ciphertexts as the quadratic equation, that is, given the ciphertexts 1 2,c c  that 

encrypts 
1 2,x x  and the secret key t : 

1 2, 1 2( ) , ,c cQ t c t c t    . If the noise of 
1 2,c c  is small, then we can 

get 
1 2x x  by computing 

1 2,
2

( )c c
p

Q t  
   

. The problem is how to perform this function under ciphertexts. In 

[BV11, Gen11], they use the tensor product t t  of t  to implement dimension reduction (key switching). 

Here, we apply another approach. Since 
1

1 2 1 2 2 1,0
, , , , ,

m

i ii
c t c t c t c t c c t t




       , we only 

require generate a new ciphertext by evaluating 
1 1

2 1, 2,0 1, 2, 1 1,0 0 1
( ,..., )

m m m

i i i i m i ii i i
c c t c c t c c t

 

  
   . To compute 

this ciphertext, we only need to call the following subroutines BitDecomp and Powersof2 introduced by [18-

20]. 

Definition 7.1. (BitDecomp (Definition 5 [20])). Let 
m

py Z  and logN m p    . We decompose y 

into its bit representation 
[ log ]

2 j

j

j p

y u
   

  , where all of the vectors 2

m

ju Z . Output 0 1 2log
( , ,..., ) N

p
u u u Z

  
 . 

Definition 7.2. (Powersof2 (Definition 6 [20])). Let 
m

py Z  and logN m p    . We define 

Powersof2(y, p) to be the vector 
log

( ,2 ,...,2 )
p N

py y y Z     . 

Lemma 7.1. (Lemma 2 [20]). For vectors ,c t  of equal length, we have 

( , ), 2( , ) , modBitDecomp c p Powersof t p c t p   . 

7.2 FHE-2 Based on ALP-UM 

We now construct our self-loop FHE-2 scheme based on ALP-UM. We want to give addition 

algorithm, multiplication algorithm and recrypting algorithm over ciphertexts. To implement these 

algorithms, we need to add the ciphertexts of encrypted secret key to the public key.  

In particular, we also use the method of FHE-1 for recrypting algorithm, that is, we choose the secret key 

with small hamming weight. Certainly, we may choose general parameters by applying the method in Section 

5.2. In addition, to implement FHE-2, we also can directly use the dimension reduction (key switching) and 

modulus switching in [19-20].  

Notice that in some sense, our scheme extends their schemes [19-20] to more general form. The 

public key of our scheme is the ciphertexts of their scheme. On the surface, this difference is small. In fact, 

this results in that the security of our scheme depends on the hardness assumption of the ALP problem. In 

this point, we believe that there is a relationship between the ALP and the closest vector problem (CVP). So, 

we generalize the LWE problem to the ALP problem, and construct a new fully homomorphic encryption 

based on ALP-UM. 

FHE-2 constructs as follows: 

FHE-2.KeyGen. 

(1) Generate ( , , , [ ])ipk m p b i   , ( , )sk A T  by using PKE-2.KeyGen. Without loss of 

generality, let t
 
be the first column vector of T . By Lemma 3.4, assume 

1 1 1

0 1 1 0, 1, 1,0 0 0
( , ,..., ) ( 2 , 2 ,..., 2 )j j j

m j j m jj j j
t t t t t t t

     

   
      such that 

0 2 1t    with 

[ ] \ 0  , , [ 1] \ 0it S i m    and 
1

0
( ) (log )

m

ii
w t  




  , where 1 1{0,1,2 ,...,2 }S  ,   

is a positive integer, ( )iw t  is the hamming weight of it . 

(2) Let logN m p    . Choose a list elements 
, , ,2 2i j i j i jb s A e   over 

m

pZ  such that ,

m

i j ps Z , 

,i je   with , ,/ 2, / 2i j i js m e m
 
  , where [ 1], [ 1]i m j N    . 

(3) Let '

iB , [ 1]i m   be a matrix with row vectors 
,i jb , [ 1]j N  . Evaluate 
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' 2( , )i i iB B Powersof t p  , where 2( , )iPowersof t p  is added to the i-th column of '

iB . 

(4) Choose a list elements 
, , ,2 2i j i j i jb s A e  , [ 1], [ 1]i m j      over 

m

pZ  such that ,

m

i j ps Z , 

,i je   with , ,/ 2, / 2i j i js m e m
 
  , and evaluate 

, , ,( ,0,...,0)i j i j i j p
t b t    , denoted as 

1 1 1

0, 1, ,0 0 0
( 2 , 2 ,..., 2 )j j j

j j m jj j j
t t t t

     

  
    . 

(5) Output the public key 1

0 0( , ,{ } ,{ } , )m

i i i ipk m p b B t 

  , and the secret key ( )sk t . 

FHE-2.Enc. Given pk  and a message bit 
2x , call PKE-2.Enc(pk, x). 

FHE-2.Dec. Given sk , and a ciphertext c , call PKE-2.Dec(sk, c). 

FHE-2.Add. Given pk  and ciphertexts 
1 2,c c , output  1 2 p

c c c  . 

FHE-2.Mul. Given pk  and ciphertexts 
1 2,c c , set 

1

2, 10
( )

m

i ii
p

c BitDecomp c c B



 
  . 

FHE-2.Recrypt. Given pk  and ciphertext c , compute as follows: 

(1) Set /c c p , keeping only log 3      bits of precision after the binary point for each 

entry 
ic  of vector c . 

(2) Evaluate 1 2
, 0.5u c t          and  2 2

,u c t   . 

(3) Output a new ciphertext 
1 2newc u u  . 

Correctness: the FHE-2.Add works correctly since 

       1 2 1 2 1 2 1 2
2 2 22

, , , ,
p p p pp

c c t c c t c t c t x x                      
         

. 

The FHE-2.Mul works correctly since 

 
2

1

2, 10

2

1

2, 10
2

1

2, 10
2

1 '

2, 10

,

( ) ,

( ) ,

( ) ,

( ) ( 2( , ) ),

p

m

i ii
p p

m

i ii
p

m

i ii
p

m

i i ii

c t

BitDecomp c c B t

BitDecomp c c B t

BitDecomp c c B t

BitDecomp c c B Powersof t p t

















  
 

           

     
   

     
   

   









 

2

2, 1
2

1

2,0 1, 2, 1 1,0 1
2

1 2
2

1 2

( ) 2( , ) ),

,..., ,

, ,

p

i i p

m m

i i m i ii i
p

p

BitDecomp c c Powersof t p t

c c t c c t t

c t c t

x x



 

  
   

       

    
   

      
 

 

 

 

In the above equality, the noise of ciphertext is less than / (2 )p m t . 

Now, we estimate the noise bound of the ciphertext after one homomorphic multiplication. Given 

two ciphertexts 1 2,c c , we have 

     1 2 1 2 1 2, , , , 2 , ,
p p pp

c t c t c t c t e x t c t               
 

. 

According to FHE-2.Enc, 
3

1 22 , 2e x t e m t    . On the other hand, to compute 

1 22 ,e x t c   , one requires to sum 2 logm p  ciphertexts. This results in noise at most 3 logm p . So, the 

noise bound of the ciphertext 1 2c c c   is at most 
3 3 3log ( log )m p m t O m p  . 

Theorem 7.1. When ( )Om p  , the FHE-2.Recrypt correctly generates a ‘refresh’ ciphertext newc  

with the same message of c and smaller error term, and two homomorphic-decrypted ciphertexts support one 

multiplication. 
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Proof: This proof is similar as that of theorem 5.1.■ 

 

7.3 Security 

In this section, we present the hardness assumption of the security of our scheme.  

Theorem 7.2. Suppose p  is the product of distinct smoothing primes. Then there is a probabilistic 

polynomial time reduction from the search 
, ,n pLWE 

 to 
, , ,n m pALP UM  . 

Proof: This proof is similar as that of theorem 6.2.■ 

Theorem 7.3. Suppose the 
, , ,n m pALP UM   problem is hard for any PPT adversary A . Then the 

FHE-2 is semantic security. 

 

7.4 Optimization 

7.4.1 Large Message Space 

In the FHE-2, one can use large message space as well. Of course, one requires to add the encrypted 

secret key to the public key. Namely, the public key includes the encrypted matrix   1

2
( )T T   same as the 

encrypted vector t  in FHE-2. This is because  

 

 

     

     

 

1

2
2

1

2
2

1 1 1

2 2 2
2

1 1 1

2 2 2 2

1

2 2

( ( ) )

( 2 2 ) ( ( ) )

( ( ( ) ) 2 ( ) ( (2 ) ( ( ) )

( ( ( ) ) 2 ( ) ( 2 ) ( ( ) )

( ( ) )

p

i ii S p

i ii S i S p

i ii S i S

c T T

x s A e T T

x T T s T e T T

x T T s T e T T

x T T

x







  

 

  

 



      

         

           

        

    





 

 

. 

When one needs to perform bit operation, one must firstly unpack the ciphertext of encrypted m bits 

into m ciphertexts, each of which encrypts one bit. After operating, one can pack m ciphertexts into a 

ciphertexts by using homomorphic operation. 

Hence, the expansion rate of our FHE-2 is log ( )p O  , which can be improved to (log )O   by 

applying the dimension reduction [19]. 

 

7.4.2 Setting the Aggressive Public Key 

Since A  in PKE-2 is not public, we can set aggressively 2 (0,..., ,...,0)modi i

t is in i th column
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   in FHE-2. 

KeyGen. So, we decrease a factor log p  of the public key size. 

7.4.3 Optimizing the Secret Key 

For FHE-2, we can further optimize to decrease modulus p . Take 
0

2i

ii
t u




  with 

2

m

iu   such 

that 
1

,0
1

m

i jj
u




  for [ ]i   and iu  is ciphertext vector of iu . We modify FHE-2.Recrypt as follows: 

(1) Set /c c p , keeping only log 3      bits of precision after the binary point for each 

entry ic  of vector c . 

(2) Evaluate 2 ,i

i iu c u   for [ ]i  , 1 0
2

0.5jj
u u h




  
  , and  2 0 2

,u c u   . 

(3) Output a new ciphertext 1 2newc u u  . 

 

7.5 Extension to APIP-UM 

To descrease the public key size in FHE-2, it is not difficult to construct APIP-UM based FHE by 

using the method of FHE-2. We here omit concrete details. 

 

8. CONCLUSION 
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We have constructed two new fully homomorphic encryption schemes, whose securities 

respectively depend on the hardness assumptions of the APIP problem and the ALP problem. 

This paper raises some interesting open problems. First, the securities of our schemes are based on 

the hardness of the decisional version of the APIP and ALP. It would be most desirable to reduce the search 

version to the decision version for the APIP/ALP problem. Second, the FHE-2 scheme has low efficient, can 

we improve its efficiency? Third, our public key has the form of the closest vector problem, whether or not 

we can build the relationship between the ALP problem and the CVP problem. 
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